Pharmaceutical Research Journal Impact Factor & Information

Publisher: American Association of Pharmaceutical Scientists, American Association of Pharmaceutical Scientists

Journal description

Pharmaceutical Research the official journal of the American Association of Pharmaceutical Scientists publishes innovative basic research and reports of technological advances in the pharmaceutical-biomedical sciences. Research areas covered include: pharmaceutics and drug delivery pharmacokinetics and pharmacodynamics drug metabolism pharmacology and toxicology medicinal chemistry natural products chemistry analytical chemistry chemical kinetics and drug stability biotechnology pharmaceutical technology and clinical investigations. This monthly journal also presents articles on the social economic or management aspects of the pharmaceutical sciences. For more information including submission instructions and cumulative tables of contents please visit the Pharmaceutical Research Web page on the Web site for the American Association of Pharmaceutical Scientists.

Current impact factor: 3.42

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.42
2013 Impact Factor 3.952
2012 Impact Factor 4.742
2011 Impact Factor 4.093
2010 Impact Factor 4.456
2009 Impact Factor 3.277
2008 Impact Factor 4.024
2007 Impact Factor 3.441
2006 Impact Factor 2.848
2005 Impact Factor 2.752
2004 Impact Factor 2.94
2003 Impact Factor 2.609
2002 Impact Factor 2.354
2001 Impact Factor 2.801
2000 Impact Factor 2.475
1999 Impact Factor 2.847
1998 Impact Factor 2.53
1997 Impact Factor 2.204

Impact factor over time

Impact factor

Additional details

5-year impact 4.29
Cited half-life 9.50
Immediacy index 0.55
Eigenfactor 0.02
Article influence 1.03
Website Pharmaceutical Research website
Other titles Pharmaceutical research (Online)
ISSN 0724-8741
OCLC 45690422
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

American Association of Pharmaceutical Scientists

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Now published by Springer (1st Jan 2007)
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's personal website
    • On institutional repository or funders designated website/repository after 12 months
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version: The original publication is available at
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors can deposit in PubMed Central for public release after 12 month embargo
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: An increasing number of newly discovered drugs are poorly water-soluble and the use of natural and synthetic lipids to improve the oral bioavailability of these drugs by utilizing the digestion pathway in-vivo has proved an effective formulation strategy. The mechanisms responsible for lipid digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms of drug on precipitation may affect the total amount of drug absorbed in-vivo through their different physico-chemical properties, and the possibility that the dynamic environment of the small intestine may afford re-dissolution of precipitated drug if present in a high-energy form. This review describes the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance to the total drug absorbed.
    Pharmaceutical Research 11/2015; DOI:10.1007/s11095-015-1829-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: In the present study we introduce an efficient approach for a size-based separation of liposomes from plasma proteins employing AF4. We investigated vesicle stability and release behavior of the strongly lipophilic drug temoporfin from liposomes in human plasma for various incubation times at 37°C. Methods: We used the radioactive tracer cholesteryl oleyl ether (COE) or dipalmitoyl-phosphocholine (DPPC) as lipid markers and (14)C-labeled temoporfin. First, both lipid labels were examined for their suitability as liposome markers. Furthermore, the influence of plasma origin on liposome stability and drug transfer was investigated. The effect of membrane fluidity and PEGylation on vesicle stability and drug release characteristics was also analyzed. Results: Surprisingly, we observed an enzymatic transfer of (3)H-COE to lipoproteins due to the cholesterol ester transfer protein (CETP) in human plasma in dependence on membrane rigidity and were able to inhibit this transfer by plasma preincubation with the CETP inhibitor torcetrapib. This effect was not seen when liposomes were incubated in rat plasma. DPPC labels suffered from hydrolysis effects during preparation and/or storage. Fluid liposomes were less stable in human plasma than their PEGylated analogues or a rigid formulation. In contrast, the transfer of the incorporated drug to lipoproteins was higher for the rigid formulations. Conclusions: The observed effects render COE-labels questionable for in vivo studies using CEPT-rich species. Here, choline labelled (14)C-DPPC was found to be the most promising alternative. Bilayer composition has a high influence on stability and drug release of a liposomal formulation in human plasma.
    Pharmaceutical Research 11/2015; DOI:10.1007/s11095-015-1831-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The aims of this study were twofold. First, to evaluate the effectiveness of selected polymers in inhibiting solution crystallization of celecoxib. Second, to compare the release rate and crystallization tendency of celecoxib amorphous solid dispersions (ASDs) formulated with a single polymer, or binary polymer combinations. Methods: The effectiveness of polymers, polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS), in maintaining supersaturation of celecoxib solutions was evaluated by performing nucleation induction time measurements. Crystallization kinetics of ASD suspensions were monitored using Raman spectroscopy. Dissolution experiments were carried out under non-sink conditions. Results: Pure amorphous celecoxib crystallized rapidly through both matrix and solution pathways. Matrix and solution crystallization was inhibited when celecoxib was molecularly mixed with a polymer, resulting in release of the drug to form supersaturated solutions. Cellulosic polymers were more effective than PVP in maintaining supersaturation. Combining a cellulosic polymer and PVP enabled improved drug release and stability to crystallization. Conclusions: Inclusion of an effective solution crystallization inhibitor as a minor component in ternary dispersions resulted in prolonged supersaturation following dissolution. This study shows the feasibility of formulation strategies for ASDs where a major polymer component is used to achieve one key property e.g. release, while a minor polymer component is added to prevent crystallization.
    Pharmaceutical Research 11/2015; DOI:10.1007/s11095-015-1823-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Aggregation aspects of therapeutic monoclonal antibodies (mAbs) are of common concern to the pharmaceutical industry. Low pH treatment is applied during affinity purification and to inactivate endogenous retroviruses, directing interest to the mechanisms of acid-induced antibody aggregation. Methods: We characterized the oligomerization kinetics at pH 3.3, as well as the reversibility upon neutralization, of three model mAbs with identical variable regions, representative of IgG1, IgG2 and IgG4 respectively. We applied size-exclusion high performance liquid chromatography and orthogonal analytical methods, including small-angle X-ray scattering and dynamic light scattering and supplemented the experimental data with crystal structure-based spatial aggregation propensity (SAP) calculations. Results: We revealed distinct solution behaviors between the three mAb models: At acidic pH IgG1 retained monomeric, whereas IgG2 and IgG4 exhibited two-phase oligomerization processes. After neutralization, IgG2 oligomers partially reverted to the monomeric state, while on the contrary, IgG4 oligomers tended to aggregate. Subclass-specific aggregation-prone motifs on the Fc fragments were identified, which may lead to two distinct pathways of reversible and irreversible aggregation, respectively. Conclusions: We conclude that subtle variations in mAb sequence greatly affect responses towards low-pH incubation and subsequent neutralization, and demonstrate how orthogonal biophysical methods distinguish between reversible and irreversible mAb aggregation pathways at early stages of acidic treatment.
    Pharmaceutical Research 11/2015; DOI:10.1007/s11095-015-1821-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the potential of zein as a sole excipient for controlled release formulations prepared by hot melt extrusion. Physical mixtures of zein, water and crystalline paracetamol were hot melt extruded (HME) at 80°C and injection moulded (IM) into caplet forms. HME-IM Caplets were characterised using differential scanning calorimetry, ATR-FTIR spectroscopy, scanning electron microscopy and powder X-ray diffraction. Hydration and drug release kinetics of the caplets were investigated and fitted to a diffusion model. For the formulations with lower drug loadings, the drug was found to be in the non-crystalline state, while for the ones with higher drug loadings paracetamol is mostly crystalline. Release was found to be largely independent of drug loading but strongly dependent upon device dimensions, and predominately governed by a Fickian diffusion mechanism, while the hydration kinetics shows the features of Case II diffusion. In this study a prototype controlled release caplet formulation using zein as the sole excipient was successfully prepared using direct HME-IM processing. The results demonstrated the unique advantage of the hot melt extruded zein formulations on the tuneability of drug release rate by alternating the device dimensions.
    Pharmaceutical Research 03/2015; 32(8). DOI:10.1007/s11095-015-1663-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Transdermal reverse iontophoresis offers a noninvasive tool for clinical and therapeutic monitoring of drugs and endogenous molecules. This study investigated the viability of reverse iontophoresis as an alternative technique to blood sampling for the monitoring of gabapentin. Methods Ex vivo studies assessed the influence of polarity, applied current (0.064–0.32 mA) and subdermal concentration (0.5–20 μg/mL) on the recovery of gabapentin. These experiments were carried out in vertical Franz diffusion cell for a period of 3 h using rat skin. In vivo experiments examined the versatility of this method to extract gabapentin from the subdermal region following intravenous administration of gabapentin (30 mg/kg) in rat model. Results Preliminary studies demonstrate that greater amount of gabapentin was extracted in the cathodal chamber due to the contribution of electroosmosis. Increasing the current intensity significantly enhances the extraction flux (P
    Pharmaceutical Research 03/2015; 32(4):1417-1424. DOI:10.1007/s11095-014-1546-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is one of the untreatable neurodegenerative diseases characterised by the pathologic amyloid plaque deposition and inflammation. The aim of this study is to evaluate the neuroprotective effects of nanoformulated SurR9-C84A, a survivin mutant belonging to the inhibitors of the apoptosis (IAP) protein family. The effect of SurR9-C84A was studied against the β-amyloid toxicity and various inflammatory insults in the differentiated SK-N-SH neurons. SurR9-C84A loaded poly(lactic-co-glycolic acid) nanoparticles were prepared following the modified double emulsion technique. The neuroprotective effect of SurR9-C84A was evaluated against the amyloid-β (Aβ) peptide fragment, N-methyl-D-aspartate (NMDA) toxicity and the inflammatory assaults. To mimic the in vivo situation, a co-culture of neurons and microglia was also studied to validate these results. SurR9-C84A treatments showed improved neuronal health following Aβ, and NMDA toxicity in addition to inflammatory insults induced in mono and co-cultures. The neuroprotective effect was evident with the reduced neuronal death, accelerated expression of neuronal integrity markers (neurofilaments, beta-tubulin III etc.,) and the neuroprotective ERK/MAPK signalling. The current results demonstrated that the SurR9-C84A nanoformulation was very effective in rescuing the neurons and holds a potential future application against AD.
    Pharmaceutical Research 03/2015; 32(8). DOI:10.1007/s11095-015-1664-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug repositioning strategies were employed to explore new therapeutic indications for existing drugs that may exhibit dual negative mGluR1/5 modulating activities as potential treatments for neuropathic pain. A customized in silico-in vitro-in vivo drug repositioning scheme was assembled and implemented to search available drug libraries for compounds with dual mGluR1/5 antagonistic activities, that were then evaluated using in vitro functional assays and, for validated hits, in an established animal model for neuropathic pain. Tizoxanide, the primary active metabolite of the FDA approved drug nitazoxanide, fit in silico pharmacophore models constructed for both mGluR1 and mGluR5. Subsequent calcium (Ca++) mobilization functional assays confirmed that tizoxanide exhibited appreciable antagonist activity for both mGluR1 and mGluR5 (IC50 = 1.8 μM and 1.2 μM, respectively). The in vivo efficacy of nitazoxanide administered by intraperitoneal injection was demonstrated in a rat model for neuropathic pain. The major aim of the present study was to demonstrate the utility of an in silico-in vitro-in vivo drug repositioning protocol to facilitate the repurposing of approved drugs for new therapeutic indications. As an example, this particular investigation successfully identified nitazoxanide and its metabolite tizoxanide as dual mGluR1/5 negative modulators. A key finding is the vital importance for drug screening libraries to include the structures of drug active metabolites, such as those emanating from prodrugs which are estimated to represent 5-7% of marketed drugs.
    Pharmaceutical Research 03/2015; 32(8). DOI:10.1007/s11095-015-1665-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen Receptor-α (ERα) expression is increased in prostate cancer and acts as an oncogene. We propose that blocking of estrogen hormone binding to ERα using the ERα blocker toremifene will reduce the tumorigenicity of prostate cancer, and nano-targeted delivery of toremifene will improve anticancer efficacy. We report the synthesis and use in an orthotopic mouse model of PLGA-PEG nanoparticles encapsulating toremifene and nanoparticles encapsulating toremifene that are also conjugated to anti-PSMA for targeted prostate tumor delivery. Human prostate cancer cell line PC3M and a nude mouse model were used to test efficacy of nano-targeted and nano-encapsulated toremifene versus free toremifene on the growth and differentiation of tumor cells. Treatment with free toremifene resulted in a significant reduction in growth of prostate tumor and proliferation, and its nano-targeting resulted in greater reduction of prostate tumor growth, greater toremifene tumor uptake, and enhanced tumor necrosis. Tumors from animals treated with nano-encapsulated toremifene conjugated with anti-PSMA showed about a 15-fold increase of toremifene compared to free toremifene. Our data provide evidence that blocking ERα by toremifene and targeting prostate cancer tissues with anti-PSMA antibody on the nanoparticles' surface repressed the tumorigenicity of prostate cancer cells in this mouse model.
    Pharmaceutical Research 03/2015; 32(8). DOI:10.1007/s11095-015-1662-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop a strategy to control benzene, an ICH Q3C Class 1 impurity that may be present in spray solvents at ppm concentration, in amorphous polymer-stabilized spray-dried dispersion (SDD) products. Risk assessments included determining the probability for benzene concentration in primary spray solvents, the physical properties of volatiles, and the potential enrichment of benzene from solution to solid. Mechanistic understanding of benzene removal was gained through a benzene-spiked fate and tolerance (F&T) study simulating worst-case spray-drying conditions and application of diffusion models for secondary drying. The mass ratio of spray solution to solid presented the highest risk of benzene enrichment. With slow spray-drying kinetics, benzene was reduced about 700-fold. Under standard secondary-drying conditions to remove residual solvents, residual benzene was further removed. Using diffusion models, the maximum benzene concentration was approximated for SDDs dried to the in-process control (IPC) limit of primary solvents. Two critical control points were established to eliminate any risk of residual benzene reaching patients: (1) upstream control of benzene in solvents (≤10 ppm) and (2) IPC of residual solvents in polymer-stabilized SDDs.
    Pharmaceutical Research 02/2015; 32(8). DOI:10.1007/s11095-015-1649-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Percutaneous absorption assays of molecules for pharmaceutical and cosmetology purposes are important to determine the bioavailability of new compounds, once topically applied. The current method of choice is to measure the rate of diffusion through excised human skin using a diffusion cell. This method however entails significant drawbacks such as scarce availability and poor reproducibility of the sample, low sampling rate, and tedious assay setup. The objective of the present work is to propose an alternative method that overcomes these issues by integrating an experimental model of the skin (artificial stratum corneum) and online optical sensors into a microfluidic device. The measurement of the diffusion profile followed by the calculation of the permeability coefficients and time lag were performed on seven different molecules and obtained data positively fit with those available from literature on human skin penetration. The coating of the lipid mixture to generate the artificial stratum corneum also proved robust and reproducible. The results show that the proposed device is able to give fast, real-time, accurate, and reproducible data in a user-friendly manner, and can be produced at a large scale. These assets should help both the cosmetics and pharmaceutics fields where the skin is the target or a pathway of a formulated compound, by allowing more candidate molecules or formulations to be assessed during the various stages of their development.
    Pharmaceutical Research 02/2015; 32(8). DOI:10.1007/s11095-015-1654-x