Plant Cell Reports Journal Impact Factor & Information

Publisher: Springer Verlag

Journal description

Plant Cell Reports will publish original short communications dealing with new advances concerning all aspects of research and technology in plant cell science plant cell culture and molecular biology including biochemistry genetics cytology physiology phytopathology plant regeneration genetic manipulations nucleic acid research

Current impact factor: 3.07

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.071
2013 Impact Factor 2.936
2012 Impact Factor 2.509
2011 Impact Factor 2.274
2010 Impact Factor 2.279
2009 Impact Factor 2.301
2008 Impact Factor 1.946
2007 Impact Factor 1.974
2006 Impact Factor 1.727
2005 Impact Factor 2.173
2004 Impact Factor 1.457
2003 Impact Factor 1.423
2002 Impact Factor 1.34
2001 Impact Factor 1.375
2000 Impact Factor 1.277
1999 Impact Factor 1.076
1998 Impact Factor 1.1
1997 Impact Factor 0.967
1996 Impact Factor 0.989
1995 Impact Factor 1.726
1994 Impact Factor 1.59
1993 Impact Factor 1.852
1992 Impact Factor 1.801

Impact factor over time

Impact factor

Additional details

5-year impact 2.89
Cited half-life 7.70
Immediacy index 0.44
Eigenfactor 0.01
Article influence 0.65
Website Plant Cell Reports website
Other titles Plant cell reports
ISSN 0721-7714
OCLC 8037527
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Nicotiana sylvestris calcineurin B-like protein NsylCBL10 improves tolerance to high-salt stress through better maintenance of Na (+) balance. The calcineurin B-like (CBL) proteins represent a unique group of plant calcium sensors and play an important role in regulating the response of a plant cell to the stress. Although many studies have been made in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and poplar (Populus trichocarpa), the characterization and elucidation of the functions of CBLs in tobacco have not yet been reported. In this study, NsylCBL10, a CBL gene showing higher similarities to other CBL10 genes, was cloned from Nicotiana sylvestris. NsylCBL10 is expressed in most of the tobacco tissues, and the protein targets to the plasma membrane specifically. Over-expression of NsylCBL10 enhanced the salt tolerance of Arabidopsis wild type plants greatly, and rescued the high-salt-sensitive phenotype of Arabidopsis cbl10 mutant. The analysis of ion content indicated that over-expressing NsylCBL10 in plants is able to maintain a lower Na(+)/K(+) ratio in roots and higher Na(+)/K(+) ratio in shoots, compared with cbl10 mutant. The results suggest that NsylCBL10 might play an important role in response to high salinity stress in N. sylvestris, by keeping a better ionic homeostasis to reduce the damage of toxic ion to the plant cell.
    Plant Cell Reports 08/2015; DOI:10.1007/s00299-015-1851-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message Protopanaxadiol (PPD) is an aglycone of dammarene-type ginsenoside and has high medicinal values. In this work, we reported the PPD production in transgenic tobacco co-overexpressing PgDDS and CYP716A47. Abstract PPD is an aglycone of ginsenosides produced by Panax species and has a wide range of pharmacological activities. PPD is synthesized via the hydroxylation of dammarenediol-II (DD) by CYP716A47 enzyme. Here, we established a PPD production system via cell suspension culture of transgenic tobacco co-overexpressing the genes for PgDDS and CYP716A47. The concentration of PPD in transgenic tobacco leaves was 2.3–5.7 µg/g dry weight (DW), depending on the transgenic line. Leaf segments were cultured on medium with various types of hormones to induce callus. Auxin treatment, particularly 2,4-D, strongly enhanced the production of DD (783.8 µg g−1 DW) and PPD (125.9 µg g−1 DW). Treatment with 2,4-D enhanced the transcription of the HMG-Co reductase (HMGR) and squalene epoxidase genes. PPD production reached 166.9 and 980.9 µg g−1 DW in a 250-ml shake flask culture and in 5-l airlift bioreactor culture, respectively.
    Plant Cell Reports 05/2015; 34(9). DOI:10.1007/s00299-015-1806-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tomato is a model plant for studying plant-pathogen interactions. As regulatory factors, microRNAs (miRNAs) have been widely identified and play crucial roles in tomato-pathogen interactions, including host defense and pathogen counter-defense. Here, the review summarizes the discoveries and highlights of miRNAs in tomato diseases. Roles of artificial miRNAs in disease resistance are further discussed. Hence, a better understanding of the contribution of miRNAs in tomato disease will shed light on strategies in enhancing tomato-pathogen resistance.
    Plant Cell Reports 03/2015; 34(7). DOI:10.1007/s00299-015-1782-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Abstract Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88–37.07 % of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.
    Plant Cell Reports 03/2015; 34(7). DOI:10.1007/s00299-015-1776-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Two Populus bHLH genes ( PtFIT and PtIRO ) were cloned and characterized. The iron deficiency tolerance may be regulated by the PtFIT -dependent response pathway in Populus. Five orthologs of eight Arabidopsis basic helix-loop-helix (bHLH) genes responding to iron deficiency in Populus were analyzed. Open reading frame (ORF) regions of two bHLH genes (PtFIT and PtIRO) were isolated from the iron deficiency tolerant (PtG) and susceptible (PtY) genotypes of Populus tremula 'Erecta'. Gene sequence analyses showed that each of the two genes was identical in PtG and PtY. Phylogenetic analysis revealed that PtFIT was clustered with the bHLH genes regulating iron deficiency responses, while PtIRO was clustered with another group of the bHLH genes regulating iron deficiency responses in a FIT-independent pathway. Tissue-specific expression analysis indicated that PtFIT was only detected in the root among all tested tissues, while PtIRO was rarely detected in all tested tissues. Real-time PCR showed that PtFIT was up-regulated in roots under the iron-deficient condition. A higher level of PtFIT transcripts was detected in PtG than in PtY. Pearson Correlation Coefficient calculations indicated a strong positive correlation (r = 0.94) between PtFIT and PtIRT1 in PtG. It suggests that the iron deficiency tolerance of PtG may be regulated by the PtFIT-dependent response pathway. The PtFIT-transgenic poplar plants had an increased expression level of PtFIT and PtIRT1 responding to iron deficiency. One PtFIT-transgenic line (TL2) showed enhanced iron deficiency tolerance with higher chlorophyll content and Chl a/b ratio under iron deficiency than the control plants, indicating that PtFIT is involved in iron deficiency response in Populus. The results would provide useful information to understand iron deficiency response mechanisms in woody species.
    Plant Cell Reports 02/2015; 34(7). DOI:10.1007/s00299-015-1779-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: The molybdenum cofactor sulfurase gene ( AnMCSU ) was cloned from xerophytic desert plant Ammopiptanthus nanus and validated for its function of tolerance toward abiotic stresses by heterologous expression in Arabidopsis thaliana. Molybdenum cofactor sulfurase participates in catalyzing biosynthesis of abscisic acid, which plays a crucial role in the response of plants to abiotic stresses. In this study, we cloned molybdenum cofactor sulfurase gene (AnMCSU) from a super-xerophytic desert plant, Ammopiptanthus nanus, by using rapid amplification of cDNA ends method. This gene has a total length of 2544 bp, with a 5'- and a 3'-untranslated region of 167 and 88 bp, and an open reading frame of 2289 bp, which encodes an 84.85 kDa protein of 762 amino acids. The putative amino acid sequence shares high homology and conserved amino acid residues crucial for the function of molybdenum cofactor sulfurases with other leguminous species. The encoded protein of the AnMCSU gene was located in the cytoplasm by transient expression in Nicotiana benthamiana. The result of real-time quantitative PCR showed that the expression of the AnMCSU gene was induced by heat, dehydration, high salt stresses, and ABA induction, and inhibited by cold stress. The heterologous expression of the AnMCSU gene significantly enhanced the tolerance of Arabidopsis thaliana to high salt, cold, osmotic stresses, and abscisic acid induction. All these results suggest that the AnMCSU gene might play a crucial role in the adaptation of A. nanus to abiotic stress and has potential to be applied to transgenic improvement of commercial crops.
    Plant Cell Reports 02/2015; 34(7). DOI:10.1007/s00299-015-1775-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Overexpression of CuZnSOD gene from Arachis hypogaea demonstrating its involvement in abiotic stress tolerance. Abiotic stress is accompanied by the formation of reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and hydroxyl radicals, causing extensive cellular damage and inhibition of photosynthesis that limit the plant productivity. The level of ROS in cells needs to be tightly regulated and the toxic effects of ROS are countered by enzymatic as well as non-enzymatic antioxidant systems. The superoxide dismutase is the first enzyme involved in the detoxification of ROS and converts superoxide (O2(·-)) radicals to H2O2. A full-length cDNA clone encoding a CuZnSOD, named AhCuZnSOD, was isolated from the salt tolerant cell lines of Arachis hypogaea, stably thriving at 200 mM NaCl. The cell line showed higher transcript accumulation under multiple abiotic stresses, including drought, salinity, cold and oxidative stress treatment. The functional role of AhCuZnSOD in alleviation of abiotic stress was assessed by its overexpression in transgenic tobacco plants. The T1 transgenic plants showed improved tolerance to salinity and dehydration stress as indicated by higher seed germination and better chlorophyll content. The transgenic plants survived under longer periods of water deficiency and salinity stress and displayed improved recovery after rehydration compared to the wild type (WT) plants. The enhanced level of the transgene correlated with higher relative water content, less electrolyte damage, less malondialdehyde, higher antioxidant enzyme activity, H2O2 and O2(·-) accumulation under stress conditions compared to WT plants. Our results substantiate that increased levels of SOD activity brought about by overexpression of AhCuZnSOD gene may play an important role in ameliorating oxidative injury induced by various environmental stresses.
    Plant Cell Reports 02/2015; 34(7). DOI:10.1007/s00299-015-1770-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: GhNPR1 shares similar functions as Arabidopsis NPR1 . Silencing of GhNPR1 in Gladiolus results in an enhanced susceptibility to Curvularia gladioli. We propose that GhNPR1 plays important roles in plant immunity. Gladiolus plants and corms are susceptible to various types of pathogens including fungi, bacteria and viruses. Understanding the innate defense mechanism in Gladiolus is a prerequisite for the development of new protection strategies. The non-expressor of pathogenesis-related gene 1 (NPR1) and bzip transcription factor TGA2 play a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). In this study, the homologous genes, GhNPR1 and GhTGA2, were isolated from Gladiolus and functionally characterized. Expression of GhNPR1 exhibited a 3.8-fold increase in Gladiolus leaves following salicylic acid treatment. A 1332 bp fragment of the GhNPR1 promoter from Gladiolus hybridus was identified. Inducibility of the GhNPR1 promoter by SA was demonstrated using transient expression assays in the leaves of Nicotiana benthamiana. The GhNPR1 protein is located in the nucleus and cytomembrane. GhNPR1 interacts with GhTGA2, as observed using the bimolecular fluorescence complementation system. Overexpression of GhNPR1 in an Arabidopsis npr1 mutant can restore its basal resistance to Pseudomonas syringae pv. tomato DC3000. Silencing of GhNPR1, using a tobacco rattle virus-based silencing vector, resulted in an enhanced susceptibility to Curvularia gladioli. In conclusion, these results suggest that GhNPR1 plays a pivotal role in the SA-dependent systemic acquired resistance in Gladiolus.
    Plant Cell Reports 02/2015; 34(6). DOI:10.1007/s00299-015-1765-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Endophytic microbes Bacillus sp. LZR216 isolated from Arabidopsis root promoted Arabidopsis seedlings growth. It may be achieved by promoting the lateral root growth and inhibiting the primary root elongation. Plant roots are colonized by an immense number of microbes, including epiphytic and endophytic microbes. It was found that they have the ability to promote plant growth and protect roots from biotic and abiotic stresses. But little is known about the mechanism of the endophytic microbes-regulated root development. We isolated and identified a Bacillus sp., named as LZR216, of endophytic bacteria from Arabidopsis root. By employing a sterile experimental system, we found that LZR216 promoted the Arabidopsis seedlings growth, which may be achieved by promoting the lateral root growth and inhibiting the primary root elongation. By testing the cell type-specific developmental markers, we demonstrated that Bacillus sp. LZR216 increases the DR5::GUS and DR5::GFP expression but decreases the CYCB1;1::GUS expression in Arabidopsis root tips. Further studies indicated that LZR216 is able to inhibit the meristematic length and decrease the cell division capability but has little effect on the quiescent center function of the root meristem. Subsequently, it was also shown that LZR216 has no significant effects on the primary root length of the pin2 and aux1-7 mutants. Furthermore, LZR216 down-regulates the levels of PIN1-GFP, PIN2-GFP, PIN3-GFP, and AUX1-YFP. In addition, the wild-type Arabidopsis seedlings in the present of 1 or 5 µM NPA (an auxin transport inhibitor) were insensitive to LZR216-inhibited primary root elongation. Collectively, LZR216 regulates the development of root system architecture depending on polar auxin transport. This study shows a new insight on the ability of beneficial endophytic bacteria in regulating postembryonic root development.
    Plant Cell Reports 02/2015; 34(6). DOI:10.1007/s00299-015-1766-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Large and complex maize BIBAC inserts, even with a length of about 164 kb and repeat sequences of 88.1%, were transferred into rice. The BIBAC vector has been established to clone large DNA fragments and directly transfer them into plants. Previously, we have constructed a maize B73 BIBAC library and demonstrated that the BIBAC clones were stable in Agrobacterium. In this study, we demonstrated that the maize BIBAC clones could be used for rice genetic transformation through Agrobacterium-mediated method, although the average transformation efficiency for the BIBAC clones (0.86%) is much lower than that for generally used binary vectors containing small DNA fragments (15.24%). The 164-kb B73 genomic DNA insert of the BIBAC clone B2-6 containing five maize gene models and 88.1% of repetitive sequences was transferred into rice. In 18.75% (3/16) of the T1, 13.79% (4/29) of the T2, and 5.26% (1/19) of the T3 generation transgenic rice plants positive for the GUS and HYG marker genes, all the five maize genes can be detected. To our knowledge, this is the largest and highest content of repeat sequence-containing DNA fragment that was successfully transferred into plants. Gene expression analysis (RT-PCR) showed that the expression of three out of five genes could be detected in the leaves of the transgenic rice plants. Our study showed a potential to massively use maize genome resource for rice breeding by mass transformation of rice with large maize genomic DNA fragment BIBAC clones.
    Plant Cell Reports 02/2015; 34(6). DOI:10.1007/s00299-015-1764-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aerial parts of plants are covered with a cuticle, a hydrophobic layer consisting of cutin polyester and cuticular waxes that protects them from various environmental stresses. Cuticular waxes mainly comprise very long chain fatty acids and their derivatives such as aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters that are also important raw materials for the production of lubricants, adhesives, cosmetics, and biofuels. The major function of cuticular waxes is to control non-stomatal water loss and gas exchange. In recent years, the in planta roles of many genes involved in cuticular wax biosynthesis have been characterized not only from model organisms like Arabidopsis thaliana and saltwater cress (Eutrema salsugineum), but also crop plants including maize, rice, wheat, tomato, petunia, Medicago sativa, Medicago truncatula, rapeseed, and Camelina sativa through genetic, biochemical, molecular, genomic, and cell biological approaches. In this review, we discuss recent advances in the understanding of the biological functions of genes involved in cuticular wax biosynthesis, transport, and regulation of wax deposition from Arabidopsis and crop species, provide information on cuticular wax amounts and composition in various organs of nine representative plant species, and suggest the important issues that need to be investigated in this field of study.
    Plant Cell Reports 02/2015; 34(4). DOI:10.1007/s00299-015-1772-2