Plant Cell Reports Journal Impact Factor & Information

Publisher: Springer Verlag

Journal description

Plant Cell Reports will publish original short communications dealing with new advances concerning all aspects of research and technology in plant cell science plant cell culture and molecular biology including biochemistry genetics cytology physiology phytopathology plant regeneration genetic manipulations nucleic acid research

Current impact factor: 3.07

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.071
2013 Impact Factor 2.936
2012 Impact Factor 2.509
2011 Impact Factor 2.274
2010 Impact Factor 2.279
2009 Impact Factor 2.301
2008 Impact Factor 1.946
2007 Impact Factor 1.974
2006 Impact Factor 1.727
2005 Impact Factor 2.173
2004 Impact Factor 1.457
2003 Impact Factor 1.423
2002 Impact Factor 1.34
2001 Impact Factor 1.375
2000 Impact Factor 1.277
1999 Impact Factor 1.076
1998 Impact Factor 1.1
1997 Impact Factor 0.967
1996 Impact Factor 0.989
1995 Impact Factor 1.726
1994 Impact Factor 1.59
1993 Impact Factor 1.852
1992 Impact Factor 1.801

Impact factor over time

Impact factor

Additional details

5-year impact 2.89
Cited half-life 7.70
Immediacy index 0.44
Eigenfactor 0.01
Article influence 0.65
Website Plant Cell Reports website
Other titles Plant cell reports
ISSN 0721-7714
OCLC 8037527
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
    Plant Cell Reports 11/2015; DOI:10.1007/s00299-015-1895-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant's MADS-box gene family. Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC (C) gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC (C) gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.
    Plant Cell Reports 11/2015; DOI:10.1007/s00299-015-1898-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Seedlessness, one of the most desired traits in fleshy fruits, can be obtained altering solely AGL11 gene, a D -class MADS-box. Opposite to overlapping functions described for ovule identity. AGAMOUS like-11 (AGL11) is a D-class MADS-box gene that determines ovule identity in model species. In grapevine, VviAGL11 has been proposed as the main candidate gene responsible for seedlessness because ovules develop into seeds after fertilization. Here, we demonstrate that AGL11 has a direct role in the determination of the seedless phenotype. In grapevine, broad expression analysis revealed very low expression levels of the seedless allele compared to the seeded allele at the pea-size berry stage. Heterozygous genotypes have lower transcript accumulation than expected considering the diploid nature of grapevine, thereby revealing that the dominant phenotype previously described for seedlessness is based on its expression level. In a seeded somatic variant of Sultanina (Thompson Seedless) that has well-developed seeds, Sultanine Monococco, structural differences were identified in the regulatory region of VviAGL11. These differences affect transcript accumulation levels and explain the phenotypic differences between the two varieties. Functional experiments in tomato demonstrated that SlyAGL11 gene silencing produces seedless fruits and that the degree of seed development is proportional to transcript accumulation levels. Furthermore, the genes involved in seed coat development, SlyVPE1 and SlyVPE2 in tomato and VviVPE in grapevine, that are putatively controlled by SlyAGL11 and VviAGL11, respectively, are expressed at lower levels in silenced tomato lines and in seedless grapevine genotypes. In conclusion, this work provides evidence that the D-class MADS-box AGL11 plays a major and direct role in seed development in fleshy fruits, providing a valuable tool for further analysis of fruit development.
    Plant Cell Reports 11/2015; DOI:10.1007/s00299-015-1882-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: The Arabidopsis mutant ( ucu2 - 2/gi - 2 ) is thaxtomin A, isoxaben and NPA-sensitive indicated by root growth and ion flux responses providing new insights into these compounds mode of action and interactions. Thaxtomin A (TA) is a cellulose biosynthetic inhibitor (CBI) that promotes plant cell hypertrophy and cell death. Electrophysiological analysis of steady-state K(+) and Ca(2+) fluxes in Arabidopsis thaliana roots pretreated with TA for 24 h indicated a disturbance in the regulation of ion movement across the plant cell membrane. The observed inability to control solute movement, recorded in rapidly growing meristematic and elongation root zones, may partly explain typical root toxicity responses to TA treatment. Of note, the TA-sensitive mutant (ucu2-2/gi-2) was more susceptible with K(+) and Ca(2+) fluxes altered between 1.3 and eightfold compared to the wild-type control where fluxes altered between 1.2 and threefold. Root growth inhibition assays showed that the ucu2-2/gi-2 mutant had an increased sensitivity to the auxin 2,4-D, but not IAA or NAA; it also had increased sensitivity to the auxin efflux transport inhibitor, 1-naphthylphthalamic acid (NPA), but not 2,3,5- Triiodobenzoic acid (TIBA), when compared to the WT. The NPA sensitivity data were supported by electrophysiological analysis of H(+) fluxes in the mature (but not elongation) root zone. Increased sensitivity to the CBI, isoxaben (IXB), but not dichlobenil was recorded. Increased sensitivity to both TA and IXB corresponded with higher levels of accumulation of these toxins in the root tissue, compared to the WT. Further root growth inhibition assays showed no altered sensitivity of ucu2-2/gi-2 to two other plant pathogen toxins, alternariol and fusaric acid. Identification of a TA-sensitive Arabidopsis mutant provides further insight into how this CBI toxin interacts with plant cells.
    Plant Cell Reports 10/2015; DOI:10.1007/s00299-015-1888-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Alternative pathway (AP) is involved in the tolerance of highland barley seedlings to the low-nitrogen stress by dissipating excessive reducing equivalents generated by photosynthesis and maintaining the cellular redox homeostasis. Low nitrogen (N) is a major limiting factor for plant growth and crop productivity. In this study, we investigated the roles of the alternative pathway (AP) in the tolerance of two barley seedlings, highland barley (Kunlun12) and barley (Ganpi6), to low-N stress. The results showed that the chlorophyll content and the fresh weight decreased more in Ganpi6 than those in Kunlun12 under low-N stress, suggesting that Kunlun12 has higher tolerance to low-N stress than Ganpi6. AP capacity was markedly induced by low-N stress; and it was higher in Kunlun12 than in Ganpi6. Comparatively, the cytochrome pathway capacity was not affected under all conditions. Western-blot analysis showed that the protein level of the alternative oxidase (AOX) increased under low-N stress in Kunlun12 but not in Ganpi6. Under low-N stress, the NAD(P)H content and the NAD(P)H to NAD(P)(+)+NAD(P)H ratio in Ganpi6 increased more than those in Kunlun12. Furthermore, photosynthetic parameters (Fv/Fm, qP, ETR and Yield) decreased markedly and qN increased, indicating photoinhibition occurred in both barley seedlings, especially in Ganpi6. When AP was inhibited by salicylhydroxamic acid (SHAM), the NAD(P)H content and the NAD(P)H to NAD(P)(+)+NAD(P)H ratio dramatically increased under all conditions, resulting in the marked accumulation of H2O2 and malondialdehyde in leaves of both barley seedlings. Meanwhile, the malate-oxaloacetate shuttle activity and the photosynthetic efficiency were further inhibited. Taken together, AP is involved in the tolerance of highland barley seedlings to low-N stress by dissipating excess reducing equivalents and maintaining the cellular redox homeostasis.
    Plant Cell Reports 10/2015; DOI:10.1007/s00299-015-1886-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message Protopanaxadiol (PPD) is an aglycone of dammarene-type ginsenoside and has high medicinal values. In this work, we reported the PPD production in transgenic tobacco co-overexpressing PgDDS and CYP716A47. Abstract PPD is an aglycone of ginsenosides produced by Panax species and has a wide range of pharmacological activities. PPD is synthesized via the hydroxylation of dammarenediol-II (DD) by CYP716A47 enzyme. Here, we established a PPD production system via cell suspension culture of transgenic tobacco co-overexpressing the genes for PgDDS and CYP716A47. The concentration of PPD in transgenic tobacco leaves was 2.3–5.7 µg/g dry weight (DW), depending on the transgenic line. Leaf segments were cultured on medium with various types of hormones to induce callus. Auxin treatment, particularly 2,4-D, strongly enhanced the production of DD (783.8 µg g−1 DW) and PPD (125.9 µg g−1 DW). Treatment with 2,4-D enhanced the transcription of the HMG-Co reductase (HMGR) and squalene epoxidase genes. PPD production reached 166.9 and 980.9 µg g−1 DW in a 250-ml shake flask culture and in 5-l airlift bioreactor culture, respectively.
    Plant Cell Reports 05/2015; 34(9). DOI:10.1007/s00299-015-1806-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tomato is a model plant for studying plant-pathogen interactions. As regulatory factors, microRNAs (miRNAs) have been widely identified and play crucial roles in tomato-pathogen interactions, including host defense and pathogen counter-defense. Here, the review summarizes the discoveries and highlights of miRNAs in tomato diseases. Roles of artificial miRNAs in disease resistance are further discussed. Hence, a better understanding of the contribution of miRNAs in tomato disease will shed light on strategies in enhancing tomato-pathogen resistance.
    Plant Cell Reports 03/2015; 34(7). DOI:10.1007/s00299-015-1782-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Abstract Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88–37.07 % of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.
    Plant Cell Reports 03/2015; 34(7). DOI:10.1007/s00299-015-1776-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: Two Populus bHLH genes ( PtFIT and PtIRO ) were cloned and characterized. The iron deficiency tolerance may be regulated by the PtFIT -dependent response pathway in Populus. Five orthologs of eight Arabidopsis basic helix-loop-helix (bHLH) genes responding to iron deficiency in Populus were analyzed. Open reading frame (ORF) regions of two bHLH genes (PtFIT and PtIRO) were isolated from the iron deficiency tolerant (PtG) and susceptible (PtY) genotypes of Populus tremula 'Erecta'. Gene sequence analyses showed that each of the two genes was identical in PtG and PtY. Phylogenetic analysis revealed that PtFIT was clustered with the bHLH genes regulating iron deficiency responses, while PtIRO was clustered with another group of the bHLH genes regulating iron deficiency responses in a FIT-independent pathway. Tissue-specific expression analysis indicated that PtFIT was only detected in the root among all tested tissues, while PtIRO was rarely detected in all tested tissues. Real-time PCR showed that PtFIT was up-regulated in roots under the iron-deficient condition. A higher level of PtFIT transcripts was detected in PtG than in PtY. Pearson Correlation Coefficient calculations indicated a strong positive correlation (r = 0.94) between PtFIT and PtIRT1 in PtG. It suggests that the iron deficiency tolerance of PtG may be regulated by the PtFIT-dependent response pathway. The PtFIT-transgenic poplar plants had an increased expression level of PtFIT and PtIRT1 responding to iron deficiency. One PtFIT-transgenic line (TL2) showed enhanced iron deficiency tolerance with higher chlorophyll content and Chl a/b ratio under iron deficiency than the control plants, indicating that PtFIT is involved in iron deficiency response in Populus. The results would provide useful information to understand iron deficiency response mechanisms in woody species.
    Plant Cell Reports 02/2015; 34(7). DOI:10.1007/s00299-015-1779-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Key message: The molybdenum cofactor sulfurase gene ( AnMCSU ) was cloned from xerophytic desert plant Ammopiptanthus nanus and validated for its function of tolerance toward abiotic stresses by heterologous expression in Arabidopsis thaliana. Molybdenum cofactor sulfurase participates in catalyzing biosynthesis of abscisic acid, which plays a crucial role in the response of plants to abiotic stresses. In this study, we cloned molybdenum cofactor sulfurase gene (AnMCSU) from a super-xerophytic desert plant, Ammopiptanthus nanus, by using rapid amplification of cDNA ends method. This gene has a total length of 2544 bp, with a 5'- and a 3'-untranslated region of 167 and 88 bp, and an open reading frame of 2289 bp, which encodes an 84.85 kDa protein of 762 amino acids. The putative amino acid sequence shares high homology and conserved amino acid residues crucial for the function of molybdenum cofactor sulfurases with other leguminous species. The encoded protein of the AnMCSU gene was located in the cytoplasm by transient expression in Nicotiana benthamiana. The result of real-time quantitative PCR showed that the expression of the AnMCSU gene was induced by heat, dehydration, high salt stresses, and ABA induction, and inhibited by cold stress. The heterologous expression of the AnMCSU gene significantly enhanced the tolerance of Arabidopsis thaliana to high salt, cold, osmotic stresses, and abscisic acid induction. All these results suggest that the AnMCSU gene might play a crucial role in the adaptation of A. nanus to abiotic stress and has potential to be applied to transgenic improvement of commercial crops.
    Plant Cell Reports 02/2015; 34(7). DOI:10.1007/s00299-015-1775-z