Journal of food protection (J FOOD PROTECT)

Publisher: International Association of Milk, Food, and Environmental Sanitarians; International Association for Food Protection, International Association for Food Protection

Journal description

The Journal of Food Protection (JFP) is an international monthly journal in the English language published by the International Association for Food Protection (formerly IAMFES). JFP is intended for publication of research and review articles on all apects of food protection and safety.

Current impact factor: 1.85

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.849
2013 Impact Factor 1.797
2012 Impact Factor 1.832
2011 Impact Factor 1.937
2010 Impact Factor 1.72
2009 Impact Factor 1.96
2008 Impact Factor 1.763
2007 Impact Factor 1.886
2006 Impact Factor 1.921
2005 Impact Factor 1.687
2004 Impact Factor 1.874
2003 Impact Factor 2.154
2002 Impact Factor 1.686
2001 Impact Factor 1.808
2000 Impact Factor 1.82
1999 Impact Factor 1.415
1998 Impact Factor 1.329
1997 Impact Factor 1.288

Impact factor over time

Impact factor

Additional details

5-year impact 1.94
Cited half-life 9.50
Immediacy index 0.21
Eigenfactor 0.01
Article influence 0.49
Website Journal of Food Protection website
Other titles Journal of food protection
ISSN 0362-028X
OCLC 2771676
Material type Periodical
Document type Journal / Magazine / Newspaper

Publisher details

International Association for Food Protection

  • Pre-print
    • Author cannot archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Classification
    ​ white

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A 3-year (2009 to 2011) grazing study was conducted to assess the effects of purple prairie clover (PPC; Dalea purpurea Vent) on fecal shedding of total Escherichia coli in cattle. Three pasture types were used in the experiment: bromegrass (Check), mixed cool season grasses with PPC (Simple), and mixed cool and warm grasses with PPC (Complex). Pastures were rotationally grazed during a summer and fall grazing period. PPC was grazed in summer at the vegetative or early flower stage and at the flower or early seed stage during the fall. Fecal samples were collected for enumeration of E. coli and chemical analyses. Forage samples were collected throughout grazing for analysis. Condensed tannins (CT) were only detected in Simple and Complex pastures that contained PPC, with higher concentrations found in the fall than in the summer. Fecal counts of E. coli in cattle grazing Simple and Complex pastures linearly decreased (P < 0.05) over summer to fall in all 3 years, an outcome not observed in cattle grazing the Check pasture. Across the three grazing seasons, fecal E. coli was lower (P < 0.05) in cattle grazing Simple and Complex pastures than in those grazing the Check pasture during the fall. During the fall, feces collected from cattle grazing the Check pasture had higher (P < 0.05) values for pH, N, NH3-N, total volatile fatty acids, and branched-chain volatile fatty acids, but a lower (P < 0.05) acetate:propionate ratio than feces collected from cattle grazing Simple or Complex pastures. In a second experiment, two strains of E. coli were cultured in M9 medium containing 25 to 200 μg/ml of PPC CT. Growth of E. coli was linearly (P < 0.01) reduced by increasing levels of PPC CT. Scanning electron micrographs showed electron-dense filamentous material associated with the outer membrane of E. coli cells exposed to CT. Incorporation of PPC into forage reduced the fecal shedding of E. coli from grazing cattle, likely due to the anti-E. coli properties of PPC CT.
    Journal of food protection 08/2015; 78(8-8):1434-1441. DOI:10.4315/0362-028X.JFP-14-426
  • [Show abstract] [Hide abstract]
    ABSTRACT: Data on the presence of diarrheagenic Escherichia coli pathotypes (DEPs) in alfalfa sprouts and correlations between the presence of coliform bacteria (CB), fecal coliforms (FC), E. coli, DEPs, and Salmonella in alfalfa sprouts are not available. The presence of and correlations between CB, FC, E. coli, DEPs, and Salmonella in alfalfa sprouts were determined. One hundred sprout samples were collected from retail markets in Pachuca, Hidalgo State, Mexico. The presence of indicator bacteria and Salmonella was determined using conventional culture procedures. DEPs were identified using two multiplex PCR procedures. One hundred percent of samples were positive for CB, 90% for FC, 84% for generic E. coli, 10% for DEPs, and 4% for Salmonella. The populations of CB ranged from 6.2 up to 8.6 log CFU/g. The FC and E. coli concentrations were between, 3 and 1,100 most probable number (MPN)/g. The DEPs identified included enterotoxigenic E. coli (ETEC; 2%), enteropathogenic E. coli (EPEC; 3%), and Shiga toxin-producing E. coli (STEC; 5%). No E. coli O157:H7 strains were detected in any STEC-positive samples. In samples positive for DEPs, the concentrations ranged from 210 to 240 MPN/g for ETEC, 28 to 1,100 MPN/g for EPEC, and 3.6 to 460 MPN/g for STEC. The Salmonella isolates identified included Salmonella enterica serotype Typhimurium in three samples and Salmonella enterica serotype Enteritidis in one. STEC and Salmonella Typhimurium were identified together in one sample. Positive correlations were observed between FC and generic E. coli, between FC and DEPs, and between generic E. coli and DEPs. Negative correlations occurred between CB and DEPs and between CB and Salmonella. Neither FC nor generic E. coli correlated with Salmonella in the sprout samples. This is the first report of ETEC, EPEC, and STEC isolated from alfalfa sprouts and the first report of correlations between different indicator groups versus DEPs and Salmonella.
    Journal of food protection 03/2015; DOI:10.4315/0362-028X.JFP-14-229
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study reviews the current literature on behavioral and environmental food safety interventions conducted in commercial and institutional food service settings. A systematic search of the published literature yielded 268 candidate articles, from which a set of 23 articles reporting intervention outcomes was retained for evaluation. A categorization of measured outcomes is reported; studies addressed multiple outcomes ranging from knowledge, attitudes, and behavior of personal hygiene and food safety to management practices and disease rates and outbreaks. This study also investigates the quality of reported research methods used to evaluate the effectiveness of the interventions, using a nine-point quality index adapted by the authors. The observed scores suggest that there are opportunities to improve the design and reporting of research in the field of foodborne disease prevention as it applies to food safety interventions that target the food service industry. The aim is to aid researchers in this area to design higher quality studies and to produce clearer and more useful reports of their research. In turn, this can help to create a more complete evidence base that can be used to continually improve interventions in this domain.
    Journal of food protection 02/2015; 78(2):446-456. DOI:10.4315/0362-028X.JFP-14-266
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the microbiological effects of a hide-on carcass decontaminating treatment recently implemented at a beef packing plant, carcasses undergoing routine processing at the plant were sampled during successive periods in January/February, April/May, and September/October. During each period, samples were collected from carcasses before and after the decontamination of hide-on carcasses, after skinning, before decontamination of the skinned carcasses, and at the end of the carcass dressing process. At each stage of processing during each period, samples were obtained by swabbing an area of 1,000 cm2 on each of 25 carcasses. Aerobes, coliforms, and Escherichia coli were enumerated. In most samples, coliforms were predominantly E. coli. In all three periods, the log mean numbers of aerobes and E. coli recovered from hides before decontamination were between 6.6 and 6.8 and between 5.3 and 5.9 log CFU/1,000 cm2, respectively. The log mean numbers of aerobes recovered from decontaminated hides were 6.6 log CFU/1,000 cm2 in January/February and April/May but 5.4 log CFU/1,000 cm2 in September/October. The log total numbers of E. coli recovered from decontaminated hides in January/February and April/May were 2.4 and 3.8 log CFU/25,000 cm2, respectively, but no E. coli was recovered from such carcasses in September/October. Log total numbers of aerobes and E. coli recovered from skinned or dressed carcasses were mostly >4 and between 1 and 2 log CFU/25,000 cm2, respectively. Typing of 480 E. coli isolates by multiple-locus variable-number tandem repeat analysis (MLVA) identified 218 MLVA types. Most isolates recovered from carcasses in different periods or at different stages of processing were of different MLVA types. However, small numbers of MLVA types were recovered in more than one period or from both hides before and after decontamination and skinned or dressed carcasses. The findings show that the hide-decontaminating treatment disrupted the usual transfer of E. coli from hides to meat surfaces during carcass skinning.
    Journal of food protection 02/2015; 78(2):256-263. DOI:10.4315/0362-028X.JFP-14-226
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current study was undertaken to evaluate chlorine resistance among strains of Salmonella Kentucky isolated from chicken carcasses. Selected strains (n = 8) were exposed to 30 ppm of chlorine in 10% buffered peptone water (pH 7.4) for 0 to 10 min at 4°C and 150 rpm. The initial level (mean ± SD) of Salmonella Kentucky was 6.18 ± 0.09 log CFU/ml and did not differ (P > 0.05) among strains. A two-way analysis of variance indicated that the level of Salmonella Kentucky in chlorinated water was affected (P < 0.05) by a time by strain interaction. Differences among strains increased as a function of chlorine exposure time. After 10 min of chlorine exposure, the most resistant strain (SK145) was 5.63 ± 0.54 log CFU/ml, whereas the least resistant strain (SK275) was 3.07 ± 0.29 log CFU/ml. Significant differences in chlorine resistance were observed for most strain comparisons. Death of Salmonella Kentucky was nonlinear over time and fitted well to a power law model with a shape parameter of 0.34 (concave upward). Time (minutes) for a 1-log reduction of Salmonella Kentucky differed (P < 0.05) among strains: >10 min for SK145, 6.0 min for SK254, 1.5 min for SK179, and 0.3 to 0.65 min for other strains. Results of this study indicate that strain is an important variable to include in models that predict changes in levels of Salmonella Kentucky in chlorinated water.
    Journal of food protection 02/2015; 78(2):414-418. DOI:10.4315/0362-028X.JFP-14-379
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to determine the effect of temperature and period of postharvest storage on the microbiological quality and shelf life of raw mangrove oysters, Crassostrea brasiliana. A total of 150 dozen oysters were collected directly from the points of extraction or cultivation in southern Brazil, and in the laboratory, they were stored raw at 5, 10, 15, 20, and 25°C for 1, 4, 8, 11, and 15 days. On each of these days, the oysters were subjected to microbiological analyses of aerobic mesophilic count, total coliforms, enterococci, Escherichia coli, Staphylococcus aureus, and Salmonella. None of the tested samples under any storage condition showed contamination levels above those allowed by Brazilian legislation for E. coli, S. aureus, and Salmonella, and there was no change (P > 0.05) in the counts of these microorganisms due to the temperature and/or period of oyster storage. Counts of enterococci and total coliforms showed a tendency to increase (P < 0.05) among the different temperatures tested. Raw mangrove oysters remain in safe microbiological conditions for consumption up to 8 days after harvesting, regardless of temperature, and their shelf life may be extended to 15 days if they are stored at temperatures not exceeding 15°C.
    Journal of food protection 01/2015; 78(1):164-171. DOI:10.4315/0362-028X.JFP-14-255
  • Journal of food protection 01/2015; Accepted for publication.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A substantial proportion of foodborne illnesses are associated with foods prepared in home kitchens. To determine risk factors that can contribute to the spread of pathogens in domestic kitchen environments, a combination study of raw poultry handling by individuals, using direct observational and questionnaire-based methods, was conducted. Fifty-six individual households were included in the study. Notational analysis was used to transcribe video recorded food handling behaviors into quantifiable risk factors. Additionally, questionnaires were administered to ascertain individuals’ knowledge of safe raw poultry handling. Questionnaire responses suggested that although participating individuals were knowledgeable about recommended poultry handling practices, observed poultry handling was frequently inconsistent with recommended practices. All of the individuals reported on the questionnaires that they wash their hands before and after handling raw poultry, but hands were actually washed properly after handling raw poultry only 12% of the time. Food handling practices leading to direct and/or indirect cross-contamination of hands, kitchen utensils, the kitchen environment, product containers (e.g., seasoning bottles) and devices (e.g., cell phones) were observed for 100% of the participating subjects. The results indicate that cross-contamination events are common during poultry handling in home kitchens, and that people’s knowledge of proper food handling was not fully translated into practice. Intervention efforts should strive to align food safety knowledge with behaviors, focusing particularly on ways to minimize the risk of cross-contamination during poultry handling in homes.
    Journal of food protection 01/2015; 35(1):8-23.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aims of the present study were to determine the prevalence and levels of Listeria monocytogenes and Escherichia coli O157:H7 in rocket and cucumber samples by deterministic (estimation of a single value) and stochastic (estimation of a range of values) approaches. In parallel, the chromogenic media commonly used for the recovery of these microorganisms were evaluated and compared, and the efficiency of an enzyme-linked immunosorbent assay (ELISA)-based protocol was validated. L. monocytogenes and E. coli O157:H7 were detected and enumerated using agar Listeria according to Ottaviani and Agosti plus RAPID’L.mono medium and Fluorocult plus sorbitol MacConkey medium with cefixime and tellurite in parallel, respectively. Identity was confirmed with biochemical and molecular tests and the ELISA. Performance indices of the media and the prevalence of both pathogens were estimated using Bayesian inference. In rocket, prevalence of both L. monocytogenes and E. coli O157:H7 was estimated at 7% (7 of 100 samples). In cucumber, prevalence was 6% (6 of 100 samples) and 3% (3 of 100 samples) for L. monocytogenes and E. coli O157:H7, respectively. The levels derived from the presence-absence data using Bayesian modeling were estimated at 0.12 CFU/25 g (0.06 to 0.20) and 0.09 CFU/25 g (0.04 to 0.170) for L. monocytogenes in rocket and cucumber samples, respectively. The corresponding values for E. coli O157:H7 were 0.59 CFU/25 g (0.43 to 0.78) and 1.78 CFU/25 g (1.38 to 2.24), respectively. The sensitivity and specificity of the culture media differed for rocket and cucumber samples. The ELISA technique had a high level of cross-reactivity. Parallel testing with at least two culture media was required to achieve a reliable result for L. monocytogenes or E. coli O157:H7 prevalence in rocket and cucumber samples.
    Journal of food protection 01/2015; 78:311-322.