Irrigation Science (IRRIGATION SCI )

Publisher: Springer Verlag


Irrigation Science will publish original contributions and short communications reporting the results of irrigation research including relevant contributions from the plant soil and atmospheric sciences as well as the analysis of field experimentation. Special emphasis will be given to multi-disciplinary studies dealing with the problems involved in maintaining the long term productivity of irrigated lands and in increasing the efficiency of agricultural water use. Aspects of particular interest are: Physiology of plant growth and yield response to water status. Physical and chemical aspects of water status and movement in the plant-soil-atmosphere system. Salinity and alkalinity control by soil and water management. Measurement and modification of crop and control of water in plant soil and atmosphere. Water requirements in irrigation practice. Ecological aspects of irrigated agriculture.

Impact factor 2.84

  • Hide impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Irrigation Science website
  • Other titles
    Irrigation science (Online), Irrig sci
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Variable-rate irrigation (VRI) systems have the potential to conserve water by spatially allocating limited water resources. However, when compared to traditional irrigation systems, VRI systems require a higher level of management. In this 3-year study, we evaluated spatial irrigation management of a peanut crop grown under a VRI system using an expert system (Irrigator Pro). The irrigation management treatments evaluated were: (1) using Irrigator Pro (IP) to manage irrigation uniformly in plots with varying soils; (2) using Irrigator Pro to manage irrigation in plots based on the individual soils (IPS); (3) a treatment based on maintaining soil water potential (SWP) above −30 kPa (approximately 50 % depletion of available water) in the surface 30 cm of each soil within a plot; and (4) a non-irrigated treatment. Over the 3-year study, all irrigated treatments had significantly higher yields (4,230, 4,130, and 4,394 kg ha−1 for the IP, IPS, and SWP treatments, respectively) than the non-irrigated treatment (3,285 kg ha−1), yet the yields of the three irrigation treatments were not significantly different. Averaged over the 3-year experiment, the three treatments did not differ significantly in water usage. In the 2007 and 2009 growing seasons with below normal rainfall, the IP and IPS treatments required significantly greater total water than the SWP treatment. Overall, water use efficiency was significantly higher for the non-irrigated and SWP treatments (9.4 and 8.9 kg ha−1 per mm, respectively). The lower water use efficiency for the IP and IPS irrigation treatments (7.8 kg ha−1 per mm) was attributed to greater water applications mainly due to earlier growing season initiation of irrigation applications. However, the IP and IPS treatments maintained soil water potentials at the 30- and 60-cm depths at higher levels throughout most of the season. The two Irrigator Pro expert system treatments functioned as well as the SWP-based treatment. The Irrigator Pro expert system can be effectively used for site-specific management where management zone soils do not greatly differ. Further refinement of the expert system may be needed to improve its application in spatial irrigation applications.
    Irrigation Science 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excessive precipitation since 1993 has produced extensive flooding in the Devils Lake basin in northeastern North Dakota, USA. Irrigation of agricultural crops has been proposed as a flood mitigation tool. Ten test fields were equipped with center pivot irrigation systems to compare test field evapotranspiration (ET) with ET for crops in the predominantly nonirrigated basin. An irrigation scheduling analysis indicated 2006 was a favorable year to estimate the maximum ET gains achievable via irrigation. An ET map for 2006 using the Surface Energy Balance Algorithm for Land (SEBAL) for 54 % of the basin, and land use and soil survey data, was used to compare ET estimates at the test fields with ET estimates across the study area. May–September ET was estimated by SEBAL as 394 mm for wheat and 435 mm for corn across the study area, while corn ET at irrigated test sites was 452 mm. Because the 17-mm ET advantage by irrigating corn was substantially smaller than the 41-mm ET advantage for corn versus wheat, we conclude widespread irrigation development to mitigate flooding is not justified. Coarse-textured soils exhibited some seasonal ET deficits, but their small areal extents and parcel sizes offer virtually no opportunity for flood mitigation.
    Irrigation Science 01/2015; 33(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sustaining irrigation is vital for ensuring future food security in the face of population growth and a changing climate in Bangladesh. In this study, a daily soil water balance simulation model was used to estimate the net irrigation requirements of nine crops including Boro rice for the historical period of 1985–2010 and for future climate scenarios of 2030 and 2050 dry and average conditions using the A1B emission scenario. The average net irrigation requirement of Boro rice, the main crop, is 676 mm with temporally averaged spatial variation of 644–779 mm and spatially averaged temporal variation of 570–755 mm for base case planting on clay loam soil. The variations are due to the variation in crop evapotranspiration and rainfall during the cropping period. Changing planting or sowing date affects the net irrigation requirement which for Boro rice is lower in early (October–November) or late planting (January–February). The net irrigation requirement of Boro rice is about twice that required by wheat, maize, potato, tomato and sunflower, three times that of pulses and 5–6 times that required by oilseeds. The impact of climate change on irrigation requirements of Boro rice is small. The average irrigation requirement is projected to increase by a maximum of 3 % for the 2050 dry scenario. For other crops this is projected to increase by 1–5 % depending on the crop and the time of sowing/planting.
    Irrigation Science 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A variety of techniques have been proposed in the literature for sprinkler drop characterization. An optical particle tracking velocimetry (PTV) technique is proposed in this paper to determine drop velocity, diameter and angle. The technique has been applied to the drops emitted by an isolated impact sprinkler equipped with two nozzles (diameters 3.20 and 4.37 mm) operating at a pressure of 175 kPa. PTV has been previously used to determine the velocity vector of different types of particles. In this research, PTV was used to photograph sprinkler drops over a region illuminated with laser light. Photographs were taken at four horizontal distances from the sprinkler, which was located at an elevation of 1.65 m over the soil surface. Drop angle and velocity were derived from the displacement of the drop centroid in two images separated by a short time step. Centrality and dispersion parameters were obtained for each drop variable and observation point. Results derive from the analysis of 2,360 images. Only 37.5 % of them (884 images) contained drops which could be processed by the PTV algorithm, resulting in a total of 3,782 drops. A filtering algorithm just validated 1,893 valid drops, which were successfully analyzed. The proposed technique uses expensive equipment requiring continued protection against irrigation water. This methodology has proven valuable to characterize irrigation water drops. Despite its robust measurement procedure, further comparison with other techniques seems necessary before this optical technique can be recommended for practical use in sprinkler drop characterization.
    Irrigation Science 11/2014; 32(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the magnitude and dynamics of the eddy covariance system (ECS) residual energy (energy balance closure error) for a subsurface drip-irrigated maize (Zea mays L.) field in 2005 and 2006 growing and non-growing (dormant) seasons. The corrections for coordinate rotation, oxygen, frequency, and Webb–Pearman–Leuning corrections improved the slope of the total convective energy (latent heat + sensible heat) with respect to the net available energy (from 0.68 to 0.84), but the data filtering (for horizontal and frictional wind speeds higher than 2 m s−1 and lower than 0.2 m s−1) had little effect on the slope. Also, the number of data points available for the analyses was reduced by 53 % after filtering. Overall, the daytime residual energy varied between −100 and 200 W m−2 during the dormant seasons and between −500 and 600 W m−2 during the growing seasons. Most of the nighttime residual energy ranged within ±40 W m−2 during the calendar year in 2005 and within −60 and 20 W m−2 in 2006. During nighttime, the total convective energy is vertically distributed with respect to (R n − G), indicating that the total convective energy is independent of the variations in (R n − G). Secondly, it was observed that nighttime residual energy did not show any seasonal variation patterns throughout the two consecutive years and confined mostly within a narrow range of ±40 W m−2, showing no dependency on seasonal changes in surface conditions. The maximum variation in residual energy was usually around frictional wind speed of 0.3–0.5 m s−1 (varying between −150 and 300 W m−2) and then decreasing to a range of ±100 W m−2 at higher frictional wind speeds. On average, the residual energy decreased by about 33 W m−2 (after the intercept) for every 1.0 m s−1 increase in frictional wind speed, whereas the residual energy decreased by about 4 W m−2 (after the intercept) for every 1.0 m s−1 increase in horizontal wind speed. Similar diurnal residual energy distribution patterns, with different magnitudes, were observed during growing and dormant seasons. Even though a slight decrease in residual energy was observed with increase in leaf area index (LAI) in both growing seasons, LAI did not have considerable influence on the seasonal variation in the residual energy. The residual energy was also evaluated by separating the data into morning and afternoon hours. We observed that the root-mean-squared difference value is slightly greater for the morning data than the afternoon, indicating greater residual energy in the morning hours due to weaker turbulent mixing than the afternoon. Overall, significant reduction in the available evapotranspiration data after applying a series of corrections possess challenges in terms of utilization of ECS for in-season irrigation management and crop water requirement determinations that needs to be further researched and addressed.
    Irrigation Science 11/2014; 32(6).
  • Irrigation Science 08/2014; 32(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The two-dimensional zero-inertia equations for basin irrigation were formulated as a standard scalar diffusion equation subject to Neumann boundary conditions. The formulation can handle anisotropic variations in hydraulic resistance. A numerical solution was developed using finite-volume method on unstructured triangular cells. The simulation performance of the constructed model was validated based on typical experimental data. The complete hydrodynamic model of basin irrigation was selected as the comparative model. The validated results show that the constructed model can successfully simulate the basin surface water flow when the basin surface microtopography condition is relatively smooth. Similar results were found in terms of both the water quantity conservation and convergence rate. Moreover, the computational efficiency of the constructed zero-inertia model is approximately 17 times of the complete hydrodynamic model of basin irrigation. Therefore, the constructed zero-inertia model has good simulation performance.
    Irrigation Science 07/2014; 32(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of the dimensions of the wetted zone formed under point source surface drip irrigation is essential to the design of cost-effective and efficient irrigation systems. Numerical simulations were carried out with Hydrus-2D/3D to investigate the influence of emitter discharge rates and initial soil moisture conditions on the wetting pattern dimensions of a series of soils with varying textures. Numerical simulations of simple 2D soil tank irrigation experiments were also conducted on two soil types. Based on the simulation results, the parameters of the Schwartzman and Zur model were refined. The results showed a small influence of discharge rates >1 L h−1 on the size of the wetting pattern. The only major difference was observed for the rates lower than 0.5 L h−1, where the largest wetting patterns were observed. Higher initial soil water content caused larger wetting pattern sizes in all directions. When compared to the 2D tank experimental results, Hydrus-2D/3D predicted the wetting pattern dimensions with a relatively small root mean square error not exceeding 2.6 cm. The numerical data obtained for a wide range of textures provided the opportunity to refine the parameters of the Schwartzman and Zur model, which, when compared to experimental data from the literature, provided good estimates of wetting pattern dimensions. This suggests that this simple model, for which the only soil parameter required is the saturated hydraulic conductivity, could provide a valuable and practical tool for irrigation design.
    Irrigation Science 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the impact of using treated wastewater and deficit irrigation on yield, water productivity, dry matter and soil moisture availability. The experiment included six treatments of deficit irrigation with treated wastewater during the 2010 and 2011 seasons and two deficit irrigation treatments combined with 3 organic amendment levels during the 2012 season. The experimental and SALTMED modelling results indicated that regulated deficit irrigation when applied during vegetative growth stage could stimulate root development, increase water and nutrient uptake and subsequently increase the yield. The organic amendment has slightly improved yield under full irrigation but had relatively small effect under stress conditions. The SALTMED model results supported and matched the experimental results and showed similar differences among the different treatments. The model proved its ability to predict soil moisture availability, yield, water productivity and total dry matter for three growing seasons under several deficit irrigation strategies using treated wastewater. The high values of the coefficient of determination R 2 reflected a very good agreement between the model and observed values. The SALTMED model results generally confirm the model’s ability to predict sweet corn growth and productivity under deficit irrigation strategies in the semi-arid region.
    Irrigation Science 05/2014; Volume 32(Issue 3):205-219.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Irrigation with treated wastewater (TWW) is gaining importance due to declining water availability in dry regions. TWW irrigation has various potential adverse effects on soil quality such as hydrophobic effects on soil surfaces, reducing initial sorptivity and promoting the formation of preferential flow paths. In May and June 2010, in situ infiltration measurements using mini disk tension infiltrometer were deployed in five different orchard plots in Israel to assess the impact of different irrigation water qualities on the soil water repellency index R. In most plantations, long-term test sites were accessed to compare adjacent plots irrigated with fresh water (FW) or TWW. Topsoil samples were analyzed for selected physical and chemical characteristics. The mean R values increased at all TWW sites, from +15 up to +55 % compared with FW sites. The water drop penetration time (WDPT) increased up to 30 fold at three of five TWW sites compared with FW sites. Subsequent U tests and multilevel analysis indicated an impact of the type of irrigation water on R and WDPT. Moreover, soil electrical conductivity and exchangeable sodium percentage were consistently higher at all TWW sites. These results show that irrigation water quality clearly influences physical and chemical properties of the soil.
    Irrigation Science 04/2014; 32(5):369-378.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to explore the soil water dynamics under micro-advective conditions. A numerical model was introduced to estimate the airflow turbulence generated by the crop canopy. The vapor pressure and air temperature in the vicinity of the soil surface were estimated from the wind velocity predicted by this model. The energy budget on the soil surface was estimated using wind velocity, vapor pressure, and air temperature simulated by numerical models. The soil water content and temperature were predicted using the simulation model describing the water and heat transfer in soil. Using the energy budget, the accuracy of this model was experimentally verified using a wind tunnel. Spatial changes of the soil water content simulated by this model were reproduced by the experiment. This indicated that the numerical model for estimating the soil water movement under micro-scale advection considering the crop body was satisfactory.
    Irrigation Science 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Simulating basin surface water flow with anisotropic roughness has practical significance. Based on the complete hydrodynamic model, a two-dimensional surface water flow model of basin irrigation with anisotropic roughness was developed in this study by constructing an anisotropic roughness model in the source terms of the governing equation. Then, the simulation performance of the proposed model was analyzed and compared based on typical experiments of basin irrigation. The results show that with basin surface anisotropic roughness, the proposed model can successfully simulate water flow in basin irrigation, and exhibits better simulation performance than the model with isotropic roughness. Three basin geometries and two kinds of inflow geometries were selected for the application of the proposed model. Applied results show that the anisotropic roughness can improve irrigation performance. When the basin width becomes narrow, the physical effect of the rotation angle in the anisotropic roughness model weakens, even becomes smooth. The two-dimensional surface water flow model of basin irrigation with anisotropic roughness provides a good numerical simulation tool for designing and evaluating the performance of basin irrigation system.
    Irrigation Science 01/2014; 32(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 3-year irrigation trial provided basic information on the response of persimmon (Diospyros kaki cv. Triumph) water use and development to irrigation levels. Constant experimental factors applied to recommended “baseline” crop factors resulted in ratios of irrigation (I) to FAO56 reference crop evapotranspiration (ET0) ranging from 0.35 to 1.14. Vegetative and reproductive growth, sap flow, stem water potential (SWP), and local climate were monitored. An overall increase in yield and vegetative growth in response to irrigation was found, which suggests a potential yield increase for higher irrigation levels (40 tons/ha for annual irrigation of 1,000 mm). At high irrigation, the yield response curve levelled off and the marginal contribution of additional water declined. The up to threefold increase in number of fruits with irrigation, with no influence on natural abscission, suggests that differences in fruit quantities stem from response to irrigation at the earlier growth stages. Mean fruit size and fruit quality, as indicated by the ratio of rejected fruit, increased with irrigation up to I/ET0 of ~0.8. Relative yield increased linearly with relative transpiration. However, post-harvest quality was not influenced. SWP, sap flow, and non-transpirable water fractions indicated that the seasonal irrigation tables were not well tuned. Initial adjustments were made during the final season of the experiment and a new table was developed based on our results. The new table should be a basis for further trials.
    Irrigation Science 01/2014;