Nucleic Acids Research (NUCLEIC ACIDS RES )

Publisher: Oxford University Press

Description

Nucleic Acids Research (NAR) publishes the results of leading edge research into physical, chemical, biochemical and biological aspects of nucleic acids and proteins involved in nucleic acid metabolism and/or interactions. It enables the rapid publication of papers under the following categories: RNA, molecular biology, chemistry, genomics, computational biology and structural biology. A Survey and Summary section provides a format for brief reviews. The first issue of each year is devoted to biological databases.

Impact factor 8.81

  • Hide impact factor history
     
    Impact factor
  • 5-year impact
    8.06
  • Cited half-life
    7.50
  • Immediacy index
    2.21
  • Eigenfactor
    0.33
  • Article influence
    3.28
  • Website
    Nucleic Acids Research website
  • Other titles
    Nucleic acids research
  • ISSN
    0305-1048
  • OCLC
    1791693
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

Oxford University Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo on science, technology, medicine articles
    • 2 years embargo on arts and humanities articles
    • Some titles may have different embargoes
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print must be accompanied by set statement (see link)
    • Pre-print must not be replaced with post-print, instead a link to published version with amended set statement should be made
    • Pre-print on author's personal website, employer website, free public server or pre-prints in subject area
    • Post-print in Institutional repositories or Central repositories
    • Publisher version cannot be used except for Nucleic Acids Research articles
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
    • Eligible UK authors may deposit in OpenDepot
    • Publisher will deposit on behalf of NIH funded authors to PubMed Central, Nucleic Acids Research authors must pay their fee first
    • Some titles may use different policies
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; 43(Database issue):D1176-82.
  • Angela J Gruber, Tayla M Olsen, Rachel H Dvorak, Michael M Cox
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacteriophage P1 Ref (recombination enhancement function) protein is a RecA-dependent, HNH endonuclease. It can be directed to create targeted double-strand breaks within a displacement loop formed by RecA. The 76 amino acid N-terminal region of Ref is positively charged (25/76 amino acid residues) and inherently unstructured in solution. Our investigation of N-terminal truncation variants shows this region is required for DNA binding, contains a Cys involved in incidental dimerization and is necessary for efficient Ref-mediated DNA cleavage. Specifically, Ref N-terminal truncation variants lacking between 21 and 47 amino acids are more effective RecA-mediated targeting nucleases. We propose a more refined set of options for the Ref-mediated cleavage mechanism, featuring the N-terminal region as an anchor for at least one of the DNA strand cleavage events. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Zsuzsanna Gyorfy, Gabor Draskovits, Viktor Vernyik, Frederick F Blattner, Tamas Gaal, Gyorgy Posfai
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5-10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7-8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, 'feast and famine' life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Meredith Corley, Amanda Solem, Kun Qu, Howard Y Chang, Alain Laederach
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribonucleic acid (RNA) secondary structure prediction continues to be a significant challenge, in particular when attempting to model sequences with less rigidly defined structures, such as messenger and non-coding RNAs. Crucial to interpreting RNA structures as they pertain to individual phenotypes is the ability to detect RNAs with large structural disparities caused by a single nucleotide variant (SNV) or riboSNitches. A recently published human genome-wide parallel analysis of RNA structure (PARS) study identified a large number of riboSNitches as well as non-riboSNitches, providing an unprecedented set of RNA sequences against which to benchmark structure prediction algorithms. Here we evaluate 11 different RNA folding algorithms' riboSNitch prediction performance on these data. We find that recent algorithms designed specifically to predict the effects of SNVs on RNA structure, in particular remuRNA, RNAsnp and SNPfold, perform best on the most rigorously validated subsets of the benchmark data. In addition, our benchmark indicates that general structure prediction algorithms (e.g. RNAfold and RNAstructure) have overall better performance if base pairing probabilities are considered rather than minimum free energy calculations. Although overall aggregate algorithmic performance on the full set of riboSNitches is relatively low, significant improvement is possible if the highest confidence predictions are evaluated independently. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Magnus Lundqvist, Fredrik Edfors, Åsa Sivertsson, Björn M Hallström, Elton P Hudson, Hanna Tegel, Anders Holmberg, Mathias Uhlén, Johan Rockberg
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Shintaro Aibara, Eugene Valkov, Meindert Lamers, Murray Stewart
    [Show abstract] [Hide abstract]
    ABSTRACT: The Mex67:Mtr2 complex is the principal yeast nuclear export factor for bulk mRNA and also contributes to ribosomal subunit export. Mex67 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA) that have been thought to be joined by flexible linkers like beads on a string, with the RRM and LRR domains binding RNAs and the NTF2-like and UBA domains binding FG-nucleoporins to facilitate movement through nuclear pores. Here, we show that the NTF2-like domain from Saccharomyces cerevisiae Mex67:Mtr2 also contributes to RNA binding. Moreover, the 3.3 Å resolution crystal structure of the Mex67(ΔUBA):Mtr2 complex, supplemented with small angle X-ray scattering data, indicated that the LRR domain has a defined spatial relationship to the Mex67(NTF2L):Mtr2 region. Conversely, the RRM domain and especially the UBA domain are more mobile. The conformation assumed by the LRR and NTF2-like domains results in clusters of positively-charged residues on each becoming arranged to form a continuous interface for binding RNA on the opposite side of the complex to the region that interacts with FG-nucleoporins to facilitate passage through nuclear pores. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Yuchao Jiang, Derek A Oldridge, Sharon J Diskin, Nancy R Zhang
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but detecting and characterizing CNV from exome sequencing is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for whole exome sequencing data. The Poisson latent factor model in CODEX includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data. CODEX is compared to existing methods on a population analysis of HapMap samples from the 1000 Genomes Project, and shown to be more accurate on three microarray-based validation data sets. We further evaluate performance on 222 neuroblastoma samples with matched normals and focus on a well-studied rare somatic CNV within the ATRX gene. We show that the cross-sample normalization procedure of CODEX removes more noise than normalizing the tumor against the matched normal and that the segmentation procedure performs well in detecting CNVs with nested structures. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Nicolas Richet, Danni Liu, Pierre Legrand, Christophe Velours, Armelle Corpet, Albane Gaubert, May Bakail, Gwenaelle Moal-Raisin, Raphael Guerois, Christel Compper, Arthur Besle, Berengère Guichard, Genevieve Almouzni, Françoise Ochsenbein
    [Show abstract] [Hide abstract]
    ABSTRACT: MCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nucleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 Å resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure, but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 heteromeric complex. Thermodynamic analysis of the quaternary complex together with structural modeling support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Martin Mück-Häusl, Manish Solanki, Wenli Zhang, Zsolt Ruzsics, Anja Ehrhardt
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant adenoviruses containing a double-stranded DNA genome of 26-45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • V Suresh, Liang Liu, Donald Adjeroh, Xiaobo Zhou
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-protein complexes are essential in mediating important fundamental cellular processes, such as transport and localization. In particular, ncRNA-protein interactions play an important role in post-transcriptional gene regulation like mRNA localization, mRNA stabilization, poly-adenylation, splicing and translation. The experimental methods to solve RNA-protein interaction prediction problem remain expensive and time-consuming. Here, we present the RPI-Pred (RNA-protein interaction predictor), a new support-vector machine-based method, to predict protein-RNA interaction pairs, based on both the sequences and structures. The results show that RPI-Pred can correctly predict RNA-protein interaction pairs with ∼94% prediction accuracy when using sequence and experimentally determined protein and RNA structures, and with ∼83% when using sequences and predicted protein and RNA structures. Further, our proposed method RPI-Pred was superior to other existing ones by predicting more experimentally validated ncRNA-protein interaction pairs from different organisms. Motivated by the improved performance of RPI-Pred, we further applied our method for reliable construction of ncRNA-protein interaction networks. The RPI-Pred is publicly available at: http://ctsb.is.wfubmc.edu/projects/rpi-pred. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we used discriminative training methods to uncover the chromatin, transcription factor (TF) binding and sequence features of enhancers underlying gene expression in individual cardiac cells. We used machine learning with TF motifs and ChIP data for a core set of cardiogenic TFs and histone modifications to classify Drosophila cell-type-specific cardiac enhancer activity. We show that the classifier models can be used to predict cardiac cell subtype cis-regulatory activities. Associating the predicted enhancers with an expression atlas of cardiac genes further uncovered clusters of genes with transcription and function limited to individual cardiac cell subtypes. Further, the cell-specific enhancer models revealed chromatin, TF binding and sequence features that distinguish enhancer activities in distinct subsets of heart cells. Collectively, our results show that computational modeling combined with empirical testing provides a powerful platform to uncover the enhancers, TF motifs and gene expression profiles which characterize individual cardiac cell fates. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    Nucleic Acids Research 01/2015;
  • Min-Young Kim, Dong-In Koh, Won-Il Choi, Bu-Nam Jeon, Deok-Yoon Jeong, Kyung-Sup Kim, Kunhong Kim, Se-Hoon Kim, Man-Wook Hur
    [Show abstract] [Hide abstract]
    ABSTRACT: The NF-κB is found in almost all animal cell types and is involved in a myriad of cellular responses. Aberrant expression of NF-κB has been linked to cancer, inflammatory diseases and improper development. Little is known about transcriptional regulation of the NF-κB family member gene RelA/p65. Sp1 plays a key role in the expression of the RelA/p65 gene. ZBTB2 represses transcription of the gene by inhibiting Sp1 binding to a Sp1-binding GC-box in the RelA/p65 proximal promoter (bp, -31 to -21). Moreover, recent studies revealed that RelA/p65 directly binds to the peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α) to decrease transcriptional activation of the PGC1α target gene PDK4, whose gene product inhibits pyruvate dehydrogenase (PDH), a key regulator of TCA cycle flux. Accordingly, we observed that RelA/p65 repression by ZBTB2 indirectly results in increased PDK4 expression, which inhibits PDH. Consequently, in cells with ectopic ZBTB2, the concentrations of pyruvate and lactate were higher than those in normal cells, indicating changes in glucose metabolism flux favoring glycolysis over the TCA cycle. Knockdown of ZBTB2 in mouse xenografts decreased tumor growth. ZBTB2 may increase cell proliferation by reprogramming glucose metabolic pathways to favor glycolysis by upregulating PDK4 expression via repression of RelA/p65 expression. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Yue Ying, Xingyu Yang, Kai Zhao, Jifang Mao, Ying Kuang, Zhugang Wang, Ruilin Sun, Jian Fei
    [Show abstract] [Hide abstract]
    ABSTRACT: The Krüppel-associated box (KRAB) domain is a transcription repression module from the largest family of transcriptional regulators encoded by higher vertebrates. We developed a drug-controllable regulation system based on an artificial KRAB-containing repressor (tTS) that targets the endogenous Hprt gene to explore the regulatory mechanism and molecular basis of KRAB-containing regulators within the context of an endogenous gene in vivo. We show that KRAB can mediate irreversible and reversible regulation of endogenous genes in mouse that is dependent on embryonic developmental stage. KRAB-induced stable DNA methylation within the KRAB binding region during the early embryonic stage, resulting in irreversible gene repression. In later stages, KRAB mainly induced de-acetylation and methylation of histone, resulting in reversible gene repression. Thus, we have characterized the KRAB-mediated regulation system within the context of an endogenous gene and multiple spatiotemporal ranges, thereby providing a basis for identifying the function of KRAB-containing regulators and aiding development of novel KRAB-based gene regulation tools in vivo. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Yen-An Tang, Chi-Hsin Chen, H Sunny Sun, Chun-Pei Cheng, Vincent S Tseng, Han-Shui Hsu, Wu-Chou Su, Wu-Wei Lai, Yi-Ching Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of Oct4, a stemness gene encoding a transcription factor, has been reported in several cancers. However, the mechanism by which Oct4 directs transcriptional program that leads to somatic cancer progression remains unclear. In this study, we provide mechanistic insight into Oct4-driven transcriptional network promoting drug-resistance and metastasis in lung cancer cell, animal and clinical studies. Through an integrative approach combining our Oct4 chromatin-immunoprecipitation sequencing and ENCODE datasets, we identified the genome-wide binding regions of Oct4 in lung cancer at promoter and enhancer of numerous genes involved in critical pathways which promote tumorigenesis. Notably, PTEN and TNC were previously undefined targets of Oct4. In addition, novel Oct4-binding motifs were found to overlap with DNA elements for Sp1 transcription factor. We provided evidence that Oct4 suppressed PTEN in an Sp1-dependent manner by recruitment of HDAC1/2, leading to activation of AKT signaling and drug-resistance. In contrast, Oct4 transactivated TNC independent of Sp1 and resulted in cancer metastasis. Clinically, lung cancer patients with Oct4 high, PTEN low and TNC high expression profile significantly correlated with poor disease-free survival. Our study reveals a critical Oct4-driven transcriptional program that promotes lung cancer progression, illustrating the therapeutic potential of targeting Oc4 transcriptionally regulated genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-viral transposons have been used successfully for genetic modification of clinically relevant cells including embryonic stem, induced pluripotent stem, hematopoietic stem and primary human T cell types. However, there has been limited evaluation of undesired genomic effects when using transposons for human genome modification. The prevalence of piggyBac(PB)-like terminal repeat (TR) elements in the human genome raises concerns. We evaluated if there were undesired genomic effects of the PB transposon system to modify human cells. Expression of the transposase alone revealed no mobilization of endogenous PB-like sequences in the human genome and no increase in DNA double-strand breaks. The use of PB in a plasmid containing both transposase and transposon greatly increased the probability of transposase integration; however, using transposon and transposase from separate vectors circumvented this. Placing a eGFP transgene within transposon vector backbone allowed isolation of cells free from vector backbone DNA. We confirmed observable directional promoter activity within the 5'TR element of PB but found no significant enhancer effects from the transposon DNA sequence. Long-term culture of primary human cells modified with eGFP-transposons revealed no selective growth advantage of transposon-harboring cells. PB represents a promising vector system for genetic modification of human cells with limited undesired genomic effects. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
    Nucleic Acids Research 01/2015;
  • Debadrita Mukherjee, Aritrika Pal, Devlina Chakravarty, Pinak Chakrabarti
    [Show abstract] [Hide abstract]
    ABSTRACT: HlyU, a transcriptional regulator common in many Vibrio species, activates the hemolysin gene hlyA in Vibrio cholerae, the rtxA1 operon in Vibrio vulnificus and the genes of plp-vah1 and rtxACHBDE gene clusters in Vibrio anguillarum. The protein is also proposed to be a potential global virulence regulator for V. cholerae and V. vulnificus. Mechanisms of gene control by HlyU in V. vulnificus and V. anguillarum are reported. However, detailed elucidation of the interaction of HlyU in V. cholerae with its target DNA at the molecular level is not available. Here we report a 17-bp imperfect palindrome sequence, 5'-TAATTCAGACTAAATTA-3', 173 bp upstream of hlyA promoter, as the binding site of HlyU. This winged helix-turn-helix protein binds necessarily as a dimer with the recognition helices contacting the major grooves and the β-sheet wings, the minor grooves. Such interactions enhance hlyA promoter activity in vivo. Mutations affecting dimerization as well as those in the DNA-protein interface hamper DNA binding and transcription regulation. Molecular dynamic simulations show hydrogen bonding patterns involving residues at the mutation sites and confirmed their importance in DNA binding. On binding to HlyU, DNA deviates by ∼68º from linearity. Dynamics also suggest a possible redox control in HlyU. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • Natalia Kunowska, Maxime Rotival, Lu Yu, Jyoti Choudhary, Niall Dillon
    [Show abstract] [Hide abstract]
    ABSTRACT: The large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Technologies that delivery antigen-encoded plasmid DNA (pDNA) to antigen presenting cell and their immune-activation are required for the success of DNA vaccines. Here we report on an artificial nanoparticle that can achieve these; a multifunctional envelope-type nanodevice modified with KALA, a peptide that forms α-helical structure at physiological pH (KALA-MEND). KALA modification and the removal of the CpG-motifs from the pDNA synergistically boosted transfection efficacy. In parallel, transfection with the KALA-MEND enhances the production of multiple cytokines and chemokines and co-stimulatory molecules via the Toll-like receptor 9-independent manner. Endosome-fusogenic lipid envelops and a long length of pDNA are essential for this immune stimulation. Furthermore, cytoplasmic dsDNA sensors that are related to the STING/TBK1 pathway and inflammasome are involved in IFN-β and IL-1β production, respectively. Consequently, the robust induction of antigen-specific cytotoxic T-lymphoma activity and the resulting prophylactic and therapeutic anti-tumor effect was observed in mice that had been immunized with bone marrow-derived dendritic cells ex vivo transfected with antigen-encoding pDNA. Collectively, the KALA-MEND possesses dual functions; gene transfection system and immune-stimulative adjuvant, those are both necessary for the successful DNA vaccine. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015;