Publisher: Indian Academy of Sciences; Indian National Science Academy; Indian Physics Association, Springer Verlag


Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.

  • Impact factor
    Show impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Pramana - Journal of Physics website
  • Other titles
    Pramāṇa (Online), Epramana, Pramāṇa, journal of physics
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [show abstract] [hide abstract]
    ABSTRACT: This paper presents a fiber Bragg grating (FBG) based sensor to study the concentration of laser dye in dye–ethanol solution. The FBG used in this experiment is indigenously developed using 255 nm UV radiations from copper vapour laser. The cladding of the FBG was partially removed using HF-based etching to make FBG sensitive to changes in the surrounding refractive index. The experimental results on the shift of the Bragg peak wavelength with HF etching and different dye concentration in ethanol are presented. The Bragg wavelength shifted from 1534.670 nm to 1534.225 nm in 30 min and from this point to 1533.97 in the next 2 min. The clad-etched Bragg peak shifted almost linearly from 1534.056 nm to 1534.162 nm as surrounding dye concentration in ethanol changes from 0 mM to 1.5 mM. It was observed that sensitivity depends on the concentration of the solution and found to be 70 pm/mM.
    Pramana 02/2014; 82(2):265.
  • [show abstract] [hide abstract]
    ABSTRACT: This paper reports the study on development of tilted fibre Bragg gratings using highly coherent 255 nm radiation, obtained from the second harmonic generation (SHG) of copper vapour laser (CVL). The transmission and reflection spectra of the tilted fibre Bragg gratings (TFBG) were studied for the tilt angles of 0◦ (normal FBG), 1◦, 3◦ and 4◦ between the fibre axis and the interference fringe plane. It was observed that as the angle of fibre axis and phase mask increased, the main Bragg peak shifted towards the higher wavelength and transmission dip decreased. The transmission dip of the cladding mode first increased and then decreased after reaching a maximum with the increase in the tilt angle.
    Pramana 02/2014; 82(2):255.
  • Pramana 02/2014; 82(2):203 -210.
  • [show abstract] [hide abstract]
    ABSTRACT: High energy, high power (HEHP) Nd:glass laser systems are used for inertial confinement fusion and equation of state (EOS) studies of materials at high temperature and pressure. A program has been undertaken for the indigenous development of Nd-doped phosphate laser glass rods and discs for HEHP lasers. In this paper, we report the characterization of the Nd-doped phosphate laser glass rods produced under this program and compare the indigenously developed laser glass to LHG-8 laser glass of M/s Hoya, Japan. We experimentally measured the values of the stimulated emission cross-section (σ) and coefficient of intensity-dependent refractive index (n 2) and hence the figure of merit F = σ / n2 of the indigenous phosphate laser glass rods. This value is found comparable to the reported value of identically doped Nd:glass rods.
    Pramana 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Studies related to the effect of pre-ionizer on laser output energy of a repetitively pulsed KrF laser are presented. The dependence of laser output energy, spectral width and beam spot homogeneity on pre-ionization parameters, namely its current and voltage rise time are reported here. Here, effectiveness of pre-ionization is optimized by improving pre-ionization current and rise time of the pump pulse of the automatic UV pre-ionizer KrF laser. It is observed that by increasing pre-ionization current from 6 kA to 10.6 kA, the output energy increases by about 30% (from 100 to 130 mJ). It is also observed that the emission spectral width reduces by almost 60% by increasing the pre-ionization current. Regular homogeneous and well-developed beam spot (nearly Hat-Top profile) was achieved under these optimized conditions.
    Pramana 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Microscopy using visible electromagnetic radiation can be used to investigate living cells in various environments. But bright field microscopy only provides two-dimensional (2D) intensity distribution at a single object plane. One of the ways to retrieve object height/thickness information is to employ quantitative phase microscopic (QPM) techniques. Interferometric QPM techniques are widely used for this. Digital holographic microscopy (DHM) is one of the state-of-the-art methods for quantitative three-dimensional (3D) imaging. Usually it is implemented in two-beam geometry, which is prone to mechanical vibrations. But to study dynamics of objects like red blood cells, one needs temporal stability much better than the fluctuations of the object, which the two-beam geometry fails to deliver. One way to overcome this hurdle is to use self-referencing techniques, in which a portion of the object beam will act as the reference beam. Here the development of self-referencing QPM techniques is described along with the results.
    Pramana 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: In the present paper, a temperature-dependent equation of state (EOS) of solids is discussed which is found to be applicable in high-pressure and high-temperature range. Present equation of state has been applied in 18 solids. The calculated data are found in very good agreement with the data available from other sources.
    Pramana 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: The acronym MLIS (molecular laser isotope separation) defines the laser process whereby the isotopes of uranium can be separated by mid-infrared laser/s when the molecule employed is UF6. The theoretical and spectroscopical data to configure and enable experiments and demonstrations in the laboratory is adequate. However, the engineering and commercial aspects require innovative technology solutions that are not presently available in the literature on these topics. This paper is an overview of the most salient features of MLIS and its potential utility at an industrial level.
    Pramana 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Careful and continuous measurements of flow, heat and mass transfer are required in quite a few contexts. Using appropriate light sources, it is possible to map velocity, temperature, and species concentration over a cross-section and as a function of time. Image formation in optical measurements may rely on scattering of radiation from particles. Alternatively, if the region of interest is transparent, refractive index would be a field variable and beam bending effects can be used to extract information about temperature and concentration of solutes dissolved in liquids. Time-lapsed images of light intensity can be used to determine fluid velocity. Though used originally for flow visualization, optical imaging has now emerged as a powerful tool for quantitative measurements. Optical methods that utilize the dependence of refractive index on concentration and temperature can be configured in many different ways. Three available routes considered are interferometry, schlieren imaging, and shadowgraph. Images recorded in these configurations can be analysed to yield time sequences of three-dimensional distributions of the transported variables. Optical methods are non-intrusive, inertia-free and can image cross-sections of the experimental apparatus. The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena.
    Pramana 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: The paper presents results of a theoretical model of a pulsed electron beam controlled CO2 laser (EBCL) to investigate the effect of cooling on the laser gas mixture. It is shown that cryogenic cooling can significantly improve the performance of the laser. The efficiency of an EBCL improved from 20% to 25.3% by cooling it to 200 K. The improvement is mainly due to the decrease of thermal population of the CO2 (0 1 0) vibration level.
    Pramana 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Recent advances in controlled generation of intense, ultrashort laser pulses in the femtosecond and attosecond time-scales have pushed new avenues of research in the coherent control of ultrafast electron dynamics in atoms and molecules. We present a topical review on the phenomenon of control of electron localization in small dissociating molecules. By creating and controlling coherent superposition of the symmetric and antisymmetric electronic states, it becomes possible to confine the evolving electron cloud onto a preferred nucleus, thereby steering the molecule towards a desired dissociation route. We discuss the origin of the idea and various mechanisms to achieve electron localization in small molecules. To highlight recent experimental progress, we explain how one can employ few-cycle IR pulses and different attosecond extreme ultraviolet (EUV) pulses in various ways to successfully demonstrate the control of electronic dynamics. Future research opportunities and challenges on this topic are envisioned.
    Pramana 01/2014; 82(1):87.
  • Pramana 01/2014; 82(2):289.
  • Pramana 12/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Studying compactons, solitons, solitary patterns and periodic solutions is important in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev–Petviashvili (KP) and the Korteweg–de Vries (KdV) equations with positive and negative exponents. The functional variable method is used to establish compactons, solitons, solitary patterns and periodic solutions for these variants. This method is a powerful tool for searching exact travelling solutions in closed form.
    Pramana 11/2013;

Related Journals