Journal of Hazardous Materials (J HAZARD MATER )

Publisher: Elsevier

Description

The Journal of Hazardous Materials publishes full length research papers, reviews, project reports, case studies and short communications which improve our understanding of the hazards and risks certain materials pose to people and the environment or deal with ways of controlling the hazards and associated risks. To limit the scope the following areas are excluded: work place health & safety, drugs, and nuclear related topics. The Journal is published in two parts: Part A: Risk Assessment and Management Characterization of the harmful effects of hazardous materials Impact assessment methods and models - acute and chronic effects of hazardous chemical releases Approaches to risk assessment and management, including legislation Incident case histories and lessons for risk management Part B Environmental Technologies Pollution control processes Inherently safer and cleaner technologies Treatment and disposal of solid, liquid and gaseous hazardous wastes Remediation of contaminated soil and groundwater.

Impact factor 4.33

  • Hide impact factor history
     
    Impact factor
  • 5-year impact
    4.68
  • Cited half-life
    3.90
  • Immediacy index
    0.48
  • Eigenfactor
    0.14
  • Article influence
    1.02
  • Website
    Journal of Hazardous Materials website
  • Other titles
    Journal of hazardous materials
  • ISSN
    0304-3894
  • OCLC
    2246095
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, arXiv.org or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, short-term exposure experiments with different ZVI concentrations were conducted to research the effects of ZVI adding on the anaerobic system for treating swine wastewater. Increasing the ZVI dose had a stimulatory effect on COD removal and CH4 production possibly due to a higher corrosion-induced H2 and dissolved ferrous ions, which could stimulate the methanogenesis and thus the biodegradation. In addition, the abiotic corrosion reactions such as flocculation, adsorption and precipitation were inevitable to removal some suspended COD. However, high ZVI doses had a potential risk on microorganism due to the present of large numbers of solid iron species in sludge, which likely encapsulated the cells and even damaged the cellular structure. Taken as a whole, the most enhancing effect induced by ZVI was observed at the rZVI/VSS of 2.63, and the maximum efficiency of per ZVI adding occurred at the rZVI/VSS of 0.74. But the ZVI concentration of 50 g/L (the rZVI/VSS was 5.26) was proved too high to facilitate microorganism activity, considering the higher LDH leakage and lower intracellular ATP level than the only sludge system.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermal activation of persulfate (PS) has been identified to be effective in the destruction of organic pollutants. The feasibility of carbon tetrachloride (CT) degradation in the thermally activated PS system was evaluated. The experimental results showed that CT could be readily degraded at 50 °C with a PS concentration of 0.5 M, and CT degradation and PS consumption followed the pseudo-first order kinetic model. Superoxide radical anion (O2−) was the predominant radical species responsible for CT degradation and the split of CCl was proposed as the possible reaction pathways for CT degradation. The process of CT degradation was accelerated by higher PS dose and lower initial CT concentration. No obvious effect of the initial pH on the degradation of CT was observed in the thermally activated PS system. Cl−, HCO3−, and humic acid (HA) had negative effects on CT degradation. In addition, the degradation of CT in the thermally activated PS system could be significantly promoted by the solvents addition to the solution. In conclusion, the thermally activated PS process is a promising option in in-situ chemical oxidation/reduction remediation for degrading highly oxidized organic contaminants such as CT that is widely detected in contaminated sites.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d−1 and 0.044 d−1, respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10–12 h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV–vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 – a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4 μg/ml, which warrants further detailed investigations concerning toxicity.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1 h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1 M sodium hydroxide for 1 h at 60 °C).
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The research has focused on the dealkalization of red mud after active roasting and water leaching, which is obtained from bauxite during alumina production. The main factors such as roasting temperature, roasting time, water leaching stage, leaching temperature, leaching reaction time and liquid to solid ratio were investigated. The mechanism of dealkalization was in-depth studied by using ICP–AES, XRD, TG-DSC, SEM–EDS and leaching kinetic. The results show that the dealkalization rate reached 82% under the condition of roasting temperature of 700 °C, roasting time of 30 min, four stage water leaching, liquid to solid ratio of 7 mL/g, leaching temperature of 90 °C and reaction time of 60 min. The diffraction peak of Na6CaAl6Si6(CO3)O24·2H2O in red mud was decreased during the active roasting process, whereas the mineral phases of NaOH·H2O and Na2Ca(CO3)2 were appeared. The content of alkali obviously decreased and the grade of other elements increased during the process of active roasting and water leaching, which was in favor of next application process of red mud. The water leaching was controlled by internal diffusion of SCM and the apparent activation energy was 22.63 kJ/mol.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd* reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher “desorption” rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308 K.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [13C6]-ETBE (BACTRAP®s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant 13C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxicity testing of nanomaterials (NMs) is experimentally challenging because NMs may interfere with test environment and assay components. In this work we propose a simple and reliable method – a ‘spot test’ to compare biocidal potency of NMs to unicellular microorganisms such as bacteria, yeasts and algae. The assay is straightforward: cells are incubated in deionized water suspensions of NMs for up to 24 h and then pipetted as a ‘spot’ on agarized medium. Altogether seven bacterial strains, yeast and a microalga were tested. CuO, TiO2 and two different Ag NPs, multi-wall C-nanotubes (MWCNTs), AgNO3, CuSO4, 3,5-dichlorophenol, triclosan and H2O2 were analyzed. The biocidal potency of tested substances ranged from 0.1 mg/L to >1000 mg/L; whereas, the least potent NMs toward all test species were TiO2 NPs and MWCNTs and most potent Ag and CuO NPs. Based on the similar toxicity pattern of the tested chemicals on the nine unicellular organisms in deionized water we conclude that toxicity mechanism of biocidal chemicals seems to be similar, whatever the organism (bacteria, yeast, alga). Therefore, when the organisms are not ‘protected’ by their environment that usually includes various organic and inorganic supplements their tolerance to toxicants is chemical- rather than organism-dependent.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This research deals with the application of untreated multi-walled carbon nanotubes (MWCNT) in their agglomerates form for the removal of non-ionic (TX-100), cationic (CTAB) and anionic (SDBS) surfactants from aqueous media. In order to optimize the removal process, the influence of several key parameters was investigated including contact time under different solid/liquid ratios, initial solution pH, temperature, along with ultrasonication assistance and desorption assays.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: With an aim of producing high value cementitious binder, stainless steel refining slag containing a high amount of CaO in γ-dicalcium silicate form was activated with NaOH and Na-silicate as well as KOH and K-silicate solutions, followed by steam curing at 80 °C. Higher levels of alkali–silicate in the activating solution resulted in higher cumulative heat suggesting accelerated reaction kinetics. With respect to compressive strength, higher levels of alkali silicate resulted in higher strength and the mortars with Na activator were found to have higher early strength than the ones with K activator. The long term strength was found to be similar, regardless of the alkali metal. Thermogravimetric, QXRD and FTIR analyses showed an increase in the amount of reaction products (CSH type) over time, further confirming the reactivity of the crystalline slag. Batch leaching results showed lower leaching of heavy metals and metalloids with K activator compared to the Na activator. These results demonstrate that the alkali type and the ratio of hydroxide to silicates have a significant impact on the hydration and mechanical strength development of the stainless steel slag. The above findings can aid in the recycling and valorization of these type of slags which otherwise end up landfilled.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological wastewater treatment processes (WWTPs), by nature of their reliance on biological entities to degrade organics and sometimes remove nutrients, are vulnerable to toxicants present in their influent. Various toxicity measurement methods have been adopted for biological WWTPs, but most are performed off-line, and cannot be adapted to on-line monitoring tools to provide an early warning for WWTP operators. However, the past decade has seen a rapid expansion in the research and development of biosensors that can be used for toxicity assessment of aquatic environments. Some of these biosensors have also been shown to be effective for use in biological WWTPs. Nevertheless, more research is needed to: examine the sensitivity of assays and sensors based on single organisms to various toxicants and develop a matrix of biosensors or a biosensor incorporating multiple organisms that can protect WWTPs; test the micro fuel cell (MFC)-based biosensors with real wastewaters and correlate the results with the well-established oxygen uptake rate (OUR)-based or CH4-based toxicity assay; and, develop advanced data processing methods for interpreting the results of on-line toxicity sensors in real WWTPs to reduce the noise due to the normal fluctuation in influent quality and quantity.
    Journal of Hazardous Materials 04/2015; 286.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Roxarsone (ROX) remains to be as an organoarsenical feed additive used widely in developing countries. However, most of the ROX is excreted unchanged in manure, which could be readily photodegraded into inorganic arsenic derivatives. In this study, the comparative cytotoxicity and arsenic accumulation were evaluated after the exposure of Tetrahymena thermophila (T. thermophila) cell model to ROX and its photodegradates. The cytotoxic effects were estimated according to the relevant cell growth curves, morphologies and MTT assays. The 36 h median effective concentrations for ROX and its photodegradates at various photolysis times (10, 20, and 30 min) are 39.0, 2.08, 1.88, and 1.82 mg (total arsenic) L−1, respectively. In parallel, the cellular arsenic uptakes were determined by hydride generation-atomic fluorescence spectrometry. Phospholipid layer as basic membrane structure was mimicked to assess the correlation between membrane permeability and cytotoxicity. The biocompatibility of ROX was dependent on its tendency to interact with cell membrane while the cytotoxicity was induced by the trans-membrane of the inorganic arsenic species present in the photodegradates of ROX. Furthermore, the photodegradates of ROX-associated alterations of intracellular protein profiles were analyzed using a proteomic approach. Overall, the significance was clarified that the control of arsenic emission caused by the application of ROX needs to be imposed.
    Journal of Hazardous Materials 04/2015; 286.