Glycoconjugate Journal (GLYCOCONJUGATE J )

Publisher: Springer Verlag


Glycoconjugate Journal publishes articles and reviews on all areas concerned with the composition degradation function interactions structure and synthesis of glycoconjugates (glycoproteins glycolipids oligosaccharides polysaccharides proteoglycans) including those aspects that are related to disease processes (eg immunological inflammatory and arthritic diseases infections metabolic disorders malignancy neurological disorders). Articles will be published on the organic synthesis of glycoconjugates and the development of methodologies only if biologically relevant. Articles on glycosylation changes in disease must focus either on the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism. Also acceptable are articles on the effects of toxicological agents (alcohol tobacco narcotics environmental agents) on glycosylation and on the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization which is responsible for organizing the biennial International Symposia on Glycoconjugates.

  • Impact factor
    Show impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Glycoconjugate Journal website
  • Other titles
    Glycoconjugate journal (Online)
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We have demonstrated that Bifidobacterium animalis subsp. lactis LKM512 had some probiotic properties in vivo and in vitro. To further understand their mechanisms, the chemical structure of the extracellular polysaccharide that constructs the cell envelope was determined. The strain was anaerobically cultured in MRS broth at 37 °C for 20 h, then the bacterial cells were harvested by centrifugation and washed. The cell wall-associated polysaccharide (CPS) was prepared from the cell wall component digested by lysozyme. The results of anion exchange and gel filtration chromatography showed that the polysaccharide was negatively charged and had a high molecular mass. The CPS was found to compose of galactopyranosyl, galactofuranosyl, glucopyranosyl and rhamnopyranosyl residues in the molar ratio of 1:1:1:3 by using methylation analysis with GC-MS and HPLC profiling. From the results of the structural characterization by 1 dimensional and 2 dimensional NMR spectroscopy, the polysaccharide was established to be a hexasaccharide repeating unit with the following structure:
    Glycoconjugate Journal 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four types of neutral glycosphingolipids (LacCer, Gb3Cer, Gb4Cer, and IV3αGalNAc-Gb4Cer; 10 pmol each) were analyzed using high-performance liquid chromatography (HPLC)-electrospray ionization quadrupole ion trap time-of-flight (ESI-QIT-TOF) mass spectrometry (MS) with a repeated high-speed polarity and MSn switching system. This system can provide six types of mass spectra, including positive and negative ion MS, MS2, and MS3 spectra, within 1 s per cycle. Using HPLC with a normal-phase column, information on the molecular weights of major molecular species of four neutral glycosphingolipids was obtained by detecting [M+Na]+ in the positive ion mode mass spectra and [M−H]− in the negative ion mode mass spectra. Sequences of glycosphingolipid oligosaccharide were obtained in the negative ion MS2 spectra. In addition, information on the ceramide structures was clearly obtained in the negative ion MS3 mass spectra. GlcCer molecular species were analyzed by HPLC-ESI-QIT-TOF MS with a reversed-phase column using 1 pmole of GlcCer. The structures of the seven molecular species of GlcCer, namely, d18:1-C16:0, d18:1-C18:0, d18:1-C20:0, d18:1-C22:0, d18:1-C23:0, d18:1-C24:1, and d18:1-C24:0, were characterized using positive ion MS and negative ion MS, MS2, and MS3. The established HPLC-ESI-QIT-TOF MS with MSn switching and a normal phase column has been successfully applied to the structural characterization of LacCer and Gb4Cer in a crude mixture prepared from human erythrocytes.
    Glycoconjugate Journal 12/2013; 30(9).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The past 25 years have seen significant advances in understanding the diversity and functions of glycoprotein glycans in Drosophila melanogaster. Genetic screens have captured mutations that reveal important biological activities modulated by glycans, including protein folding and trafficking, as well as cell signaling, tissue morphogenesis, fertility, and viability. Many of these glycan functions have parallels in vertebrate development and disease, providing increasing opportunities to dissect pathologic mechanisms using Drosophila genetics. Advances in the sensitivity of structural analytic techniques have allowed the glycan profiles of wild-type and mutant tissues to be assessed, revealing novel glycan structures that may be functionally analogous to vertebrate glycans. This review describes a selected set of recent advances in understanding the functions of N-linked and O-linked (non-glycosaminoglycan) glycoprotein glycans in Drosophila with emphasis on their relatedness to vertebrate organisms.
    Glycoconjugate Journal 01/2012; 30(1).
  • Glycoconjugate Journal 01/2011; 28:216.
  • Source
    Glycoconjugate Journal 12/2008;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alteration of glycoprotein glycans often changes various properties of the glycoprotein. To understand the significance of N-glycosylation in the pathogenesis of early-onset familial Alzheimer's disease (AD) and in beta-amyloid (Abeta) production, we examined whether the mutations in the amyloid precursor protein (APP) gene found in familial AD affect the N-glycans on APP. We purified the secreted forms of wild-type and mutant human APPs (both the Swedish type and the London type) produced by transfected C17 cells and determined the N-glycan structures of these three recombinant APPs. Although the major N-glycan species of the three APPs were similar, both mutant APPs contained higher contents of bisecting N-acetylglucosamine and core-fucose residues as compared to wild-type APP. These results demonstrate that familial AD mutations in the polypeptide backbone of APP can affect processing of the attached N-glycans; however, whether these changes in N-glycosylation affect Abeta production remains to be established.
    Glycoconjugate Journal 11/2008; 25(8):775-86.
  • [Show abstract] [Hide abstract]
    ABSTRACT: T/Tn specificity of Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha (Moraceae) fruit and a heterodimer (16 kD and 12 kD) of molecular mass 28 kD, was further confirmed by SPR analysis using T/Tn glycan containing mammalian glycoproteins. N-terminal amino acid sequence analysis of ALA showed homology at 15, 19-21, 24-27, and 29 residues with other lectin members of Moraceae family viz., Artocarpus integrifolia (jacalin) lectin, Artocarpus hirsuta lectin, and Maclura pomifera agglutinin. It is mitogenic to human PBMC and the maximum proliferation was observed at 1 ng/ml. It showed an antiproliferative effect on leukemic cells, with the highest effect toward Jurkat cells (IC(50) 13.15 ng/ml). Synthesized CdS quantum dot-ALA nanoconjugate was employed to detect the expression of T/Tn glycans on Jurkat, U937, and K562 leukemic cells surfaces as well as normal lymphocytes by fluorescence microscopy. No green fluorescence was observed with normal lymphocytes indicating that T/Tn determinants, which are recognized as human tumor associated structures were cryptic on normal lymphocyte surfaces, whereas intense green fluorescent dots appeared during imaging of leukemic cells, where such determinants were present in unmasked form. The above results indicated that QD-ALA nanoconjugate is an efficient fluorescent marker for identification of leukemic cell lines that gives rise to high quality images.
    Glycoconjugate Journal 11/2008; 25(8):741-52.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The emerging role of glycans as versatile biochemical signals in diverse aspects of cellular sociology calls for establishment of sensitive methods to monitor carbohydrate recognition by receptors such as lectins. Most of these techniques involve the immobilization of one of the binding partners on a surface, e.g. atomic force microscopy, glycan array and Surface Plasmon Resonance (SPR), hereby simulating cell surface presentation. Here, we report the synthesis of fluorescent glycoconjugates, with a functionalization strategy which avoids the frequently occurring ring opening at the reducing end for further immobilization on a surface or derivatization with biotin. In order to improve the versatility of these derivatized glycans for biological studies, a new approach for the synthesis of biotinylated and fluorescent glycans has also been realized. Finally, to illustrate their usefulness the neoglycoconjugates were immobilized on different surfaces, and the interaction analysis with a model lectin, the toxin from mistletoe, proved them to act as potent ligands, underscoring the merit of the presented synthetic approach.
    Glycoconjugate Journal 10/2008; 25(7):633-646.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study is to test several biomarkers of inflammation, of endothelial dysfunction, glycated haemoglobin, and their reflection in arterial dilatation, in patients with type 2 diabetes mellitus and in their relatives, in order to demonstrate if relatives present markers as a form of precocious indicators of diabetes mellitus. Individuals between 30 and 55 years of age and without clinical arterial disease were divided in three groups: type 2 diabetes mellitus patients without complications (12 men and 18 women); first degree relatives of type 2 diabetes mellitus (14 men and 20 women); and control individuals (9 men and 16 women). Body composition was measured with a bioelectrical impedance analyzer and endothelial function with an eco-Doppler device. We determined glucose, insulin, C-peptide, glycated haemoglobin, fibrinogen, E-selectin, P-selectin, soluble intercellular cell adhesion molecule-1 (ICAM-1), soluble vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) in plasma. We also studied endothelium independent dilatation and endothelium dependent dilatation. The results: ICAM-1 and VCAM-1 were significantly higher in the diabetic group (237.5+/-43.4 and 692.5+/-168.6 ng/l) than in controls (197.4+/-51.2 and 573.5+/-121.1 ng/l, p=0.011 and 0.013, respectively), but were not higher in the family group (224.5+/-45.2 and 599.8+/-150.4 ng/l). CRP was higher in the diabetic group (3.35+/-3.27 mg/l) than in the other groups (1.28+/-1.29 and 1.61+/-1.54 mg/l, p=0.002) and correlated with glycated haemoglobin. The non-endothelium mediated dilatation was lesser in the diabetic group than in the family group (17.3+/-6.1 vs. 24+/-8, p=0.029) and controls. In conclusion patients with uncomplicated type 2 diabetes, but not their relatives, have biochemical markers of sub-clinical inflammation in relationship with glycated haemoglobin and dysfunction of the endothelial cells markers. In these patients endothelium independent dilatation is more affected than endothelium dependent dilatation.
    Glycoconjugate Journal 09/2008; 25(6):573-9.