Research in Science and Technological Education (Res Sci Technol Educ )

Publisher: Taylor & Francis

Description

Research in Science & Technological Education publishes original research from throughout the world dealing with science education and/or technological education. It publishes articles on psychological, sociological, economic and organisational aspects of science and technological education, as well as evaluation studies of curriculum development in these fields. Its main aim is to allow specialists working in these areas the opportunity of publishing their findings for the benefit of institutions, teachers and students. It is hoped that the journal will encourage high quality research that will lead to more effective practices, behaviours and curricula in science and technology within educational establishments.

  • Impact factor
    0.00
  • 5-year impact
    0.00
  • Cited half-life
    0.00
  • Immediacy index
    0.00
  • Eigenfactor
    0.00
  • Article influence
    0.00
  • Website
    Research in Science & Technological Education website
  • Other titles
    Research in science & technological education (Online), Research in science and technological education
  • ISSN
    0263-5143
  • OCLC
    45090679
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 month embargo for STM, Behavioural Science and Public Health Journals
    • 18 month embargo for SSH journals
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • Pre-print on authors own website, Institutional or Subject Repository
    • Post-print on authors own website, Institutional or Subject Repository
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • Publisher will deposit to PMC on behalf of NIH authors.
    • STM: Science, Technology and Medicine
    • SSH: Social Science and Humanities
    • 'Taylor & Francis (Psychology Press)' is an imprint of 'Taylor & Francis'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: http://www.tandfonline.com/eprint/Rb4si7pbnxXKh7NGfchV/full
    Research in Science and Technological Education 04/2014; 32(2):182-215.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background:Since the discontinuation of Standard Attainment Tests (SATs) in science at age 11 in England, pupil performance data in science reported to the UK government by each primary school has relied largely on teacher assessment undertaken in the classroom. Purpose:The process by which teachers are making these judgements has been unclear, so this study made use of the extensive Primary Science Quality Mark (PSQM) database to obtain a ‘snapshot’ (as of March 2013) of the approaches taken by 91 English primary schools to the formative and summative assessment of pupils’ learning in science.PSQM is an award scheme for UK primary schools. It requires the science subject leader (co-ordinator) in each school to reflect upon and develop practice over the course of one year, then upload a set of reflections and supporting evidence to the database to support their application. One of the criteria requires the subject leader to explain how science is assessed within the school. Sample:The data set consists of the electronic text in the assessment section of all 91 PSQM primary schools which worked towards the Quality Mark in the year April 2012 to March 2013. Design and methods:Content analysis of a pre-existing qualitative data set. Text in the assessment section of each submission was first coded as describing formative or summative processes, then sub-coded into different strategies used. Results:A wide range of formative and summative approaches were reported, which tended to be described separately, with few links between them. Talk-based strategies are widely used for formative assessment, with some evidence of feedback to pupils. Whilst the use of tests or tracking grids for summative assessment is widespread, few schools rely on one system alone. Enquiry skills and conceptual knowledge were often assessed separately. Conclusions:There is little consistency in the approaches being used by teachers to assess science in English primary schools. Nevertheless, there is great potential for collecting evidence that can be used for both formative and summative purposes.
    Research in Science and Technological Education 01/2014; 32(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background : The motivation for this work is built upon the premise that there is a need for research-based materials for design-based science instruction. In this paper, a small portion of our work investigating the impact of a LEGOTM engineering unit on fourth grade students’ preconceptions and understanding of animals is presented. Purpose : The driving questions for our work are: (1) What is the impact of an engineering-design-based curricular module on students’ understanding of habitat and animal classification? (2) What are students’ misconceptions regarding animal classification and habitat? Sample : The study was conducted in an inner-city K-8 school in the northeastern region of the United States. There were two fourth grade classrooms in the school. The first classroom included seven girls and nine boys, whereas the other classroom included eight girls and eight boys. All fourth grade students participated in the study. Design and methods : In answering the research questions mixed-method approaches are used. Data collection methods included pre- and post-tests, pre- and post-interviews, student journals, and classroom observations. Identical pre- and post-tests were administered to measure students’ understanding of animals. They included four multiple-choice and six open-ended questions. Identical pre- and post-interviews were administered to explore students’ in-depth understanding of animals. Results : Our results show that students significantly increased their performance after instruction on both the multiple-choice questions (t = -3.586, p = .001) and the open-ended questions (t = −5.04, p = .000). They performed better on the post interviews as well. Also, it is found that design-based instruction helped students comprehend core concepts of a life science subject, animals. Conclusions : Based on these results, the main argument of the study is that engineering design is a useful framework for teaching not only physical science-related subjects, but also life science subjects in elementary science classrooms.
    Research in Science and Technological Education 01/2014; 32(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Few studies have examined students’ attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students’ motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an instrument for assessing senior high school students’ motivation and self-regulation towards technology learning. Sample: A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method: The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students’ motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach’s alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results: Seven scales, including ‘Technology learning self-efficacy,’ ‘Technology learning value,’ ‘Technology active learning strategies,’ ‘Technology learning environment stimulation,’ ‘Technology learning goal-orientation,’ ‘Technology learning self-regulation-triggering,’ and ‘Technology learning self-regulation-implementing’ were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions: The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.
    Research in Science and Technological Education 01/2014; 32(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background :Interest is assumed to be relevant for students’ learning processes. Many studies have investigated students’ interest in science; most of them however have not offered differentiated insights into the structure and elements of this interest. Purpose :The aim of this study is to obtain a precise image of secondary school students’ interest for school and out-of-school learning opportunities, both formal and informal. The study is part of a larger project on measuring the students’ Individual Concept about the Natural Sciences (ICoN), including self-efficacy, beliefs and achievements next to interest variables. Sample :Next to regular school students, a specific cohort will be analyzed as well: participants of science competitions who are regarded as having high interest, and perhaps different interest profiles than regular students. In the study described here, participants of the International Junior Science Olympiad (N = 133) and regular students from secondary schools (N = 305), age cohorts 10 to 17 years, participated. Design and methods :We adapted Holland’s well-established RIASEC-framework to analyze if and how it can also be used to assess students’ interest within science and in-school and out-of-school (leisure-time and enrichment) activities. The resulting questionnaire was piloted according to quality criteria and applied to analyze profiles of different groups (boys – girls, contest participants – non-participants). Results :The RIASEC-adaption to investigate profiles within science works apparently well for school and leisure-time activities. Concerning the interest in fostering measures, different emphases seem to appear. More research in this field needs to be done to adjust measures better to students’ interests and other pre-conditions in the future. Contrasting different groups like gender and participation in a junior science contest uncovered specific interest profiles. Conclusions :The instrument seems to offer a promising approach to identify different interest profiles for different environments and groups of students. Based on the results, further studies will be carried out to form a solid foundation for the design of enrichment measures.
    Research in Science and Technological Education 01/2014; 32(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background : In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life – an aim consistent with the notion of scientific literacy. Purpose : This paper reports Bangladeshi science teachers’ perspectives and practices in regard to the promotion of scientific literacy. Sample : Six science teachers representing a range of geographical locations, school types with different class sizes, lengths of teaching experience and educational qualifications. Design and method : This study employed a case study approach. The six teachers and their associated science classes (including students) were considered as six cases. Data were gathered through observing the teachers’ science lessons, interviewing them twice – once before and once after the lesson observation, and interviewing their students in focus groups. Results : This study reveals that participating teachers held a range of perspectives on scientific literacy, including some naïve perspectives. In addition, their perspectives were often not seen to be realised in the classroom as for teachers the emphasis of learning science was more traditional in nature. Many of their teaching practices promoted a culture of academic science that resulted in students’ difficulty in finding connections between the science they study in school and their everyday lives. This research also identified the tension which teachers encountered between their religious values and science values while they were teaching science in a culture with a religious tradition. Conclusions : The professional development practice for science teachers in Bangladesh with its emphasis on developing science content knowledge may limit the scope for promoting the concepts of scientific literacy. Opportunities for developing pedagogic knowledge is also limited and consequently impacts on teachers’ ability to develop the concepts of scientific literacy and learn how to teach for its promotion.
    Research in Science and Technological Education 01/2014; 32(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: It is widely agreed that more needs to be done to improve participation in science, technology, engineering and mathematics (STEM). Despite considerable investment in interventions, it has been difficult to discern their effectiveness and/or impact on participation. Purpose: This paper discusses findings from a six-week pilot STEM careers intervention that was designed and overseen by a teacher from one London girls’ school. We reflect on the challenges for those attempting such interventions and the problems associated with evaluating them. Sample: Data were collected from Year 9 students (girls aged 13–14 years) at the school. Design and methods: Pre- and post-intervention surveys of 68 students, classroom observations of intervention activities, three post-intervention discussion groups (five or six girls per group) and a post-intervention interview with the lead teacher were conducted. Results: Although the intervention did not significantly change students’ aspirations or views of science, it did appear to have a positive effect on broadening students’ understanding of the range of jobs that science can lead to or be useful for. Conclusions: Student aspirations may be extremely resistant to change and intervention, but students’ understanding of ‘where science can lead’ may be more amenable to intervention. Implications are discussed, including the need to promote the message that science is useful for careers in and beyond science, at degree and technical levels.
    Research in Science and Technological Education 01/2014; 32(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Critical thinking is one of the very highest orders of cognitive abilities and a key competency in higher education. Asking questions is an important component of rich learning experiences, structurally embedded in the operations of critical thinking. Our clear sense is that critical thinking and, within that, critical questioning, is heavily context dependent, in the sense that is applied, used by critical learners in a contextualised way. Purpose: Our research deals with enhancing science undergraduates’ critical questioning. We are interested in understanding and describing the nature and development of students’ critical questioning. The purpose is to conceptualise critical questioning as a competency, into three domains – knowledge, skills and attitudes/dispositions. We have no interest in a taxonomic category of context-free question-types called ‘critical questions’. In contrast, our view is that ‘being a critical questioner’ trades heavily on context. Sources of evidence: Four cases are considered as illuminative of the dimensions of science undergraduates’ critical questioning. Data were collected in natural learning environments through non-participant observation, audio-taping teacher-students interactions and semi-structured interviews. Students’ written material resulting from diverse learning tasks was also collected. Main argument: Our supposition is that one vehicle for achieving university students as critical thinkers is to enable them not just to ask critical questions, but to be critical questioners. We relate critical questioning to three domains: (1) context, (2) competency and (3) delivery, and propose a model based on illuminating examples of the in-classroom action. Conclusions: The dimensions of the competency-context-delivery model provide a framework for describing successful student critical questioning, showing that students’ capacity to be critical can be developed. It is possible, in our view, to generate critical questioners by means of promoting a true spirit of critical inquiry. The model also gives important insights into the design of teaching, learning and assessment contexts, where critical questioning could be promoted.
    Research in Science and Technological Education 01/2014; 32(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Many tools have been developed to measure the ability of workers to innovate. However, all of them are based on self-reporting questionnaires, which raises questions about their validity Purpose: The aim was to develop and validate a tool, called Ideas Generation Implementation (IGI), to objectively measure the style and potential of engineering students in generating innovative technological ideas. The cognitive framework of IGI is based on the Architectural Innovation Model (AIM). Tool description: The IGI tool was designed to measure the level of innovation in generating technological ideas and their potential to be implemented. These variables rely on the definition of innovation as ‘creativity, implemented in a high degree of success’. The levels of innovative thinking are based on the AIM and consist of four levels: incremental innovation, modular innovation, architectural innovation and radical innovation. Sample: Sixty experts in technological innovation developed the tool. We checked its face validity and calculated its reliability in a pilot study (kappa = 0.73). Then, 145 undergraduate students were sampled at random from the seven Israeli universities offering engineering programs and asked to complete the questionnaire. Design and methods: We examined the construct validity of the tool by conducting a variance analysis and measuring the correlations between the innovator’s style of each student, as suggested by the AIM, and the three subscale factors of creative styles (efficient, conformist and original), as suggested by the Kirton Adaptors and Innovators (KAI) questionnaire. Results: Students with a radical innovator’s style inclined more than those with an incremental innovator’s style towards the three creative cognitive styles. Students with an architectural innovator’s style inclined moderately, but not significantly, towards the three creative styles. Conclusions: The IGI tool objectively measures innovative thinking among students, thus allowing screening of potential employees at an early stage, during their undergraduate studies. The tool was found to be reliable and valid in measuring the style and potential of technological innovation among engineering students.
    Research in Science and Technological Education 12/2013; 32(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background : Argumentation is accepted by many science educators as a major component of science education. Many studies have investigated students’ conceptual understanding and their engagement in argumentative activities. However, studies conducted in the subject of chemistry are very rare. Purpose : The present study aimed to investigate the effects of argumentation-based chemistry lessons on pre-service science teachers’ understanding of reaction rate concepts, their quality of argumentation, and their consideration of specific reaction rate concepts in constructing an argument. Moreover, students’ perceptions of argumentation lessons were explored. Sample : There were 116 participants (21 male and 95 female), who were pre-service first-grade science teachers from a public university. The participants were recruited from the two intact classes of a General Chemistry II course, both of which were taught by the same instructor. Design and methods : In the present study, non-equivalent control group design was used as a part of quasi-experimental design. The experimental group was taught using explicit argumentation activities, and the control group was instructed using traditional instruction. The data were collected using a reaction rate concept test, a pre-service teachers’ survey, and the participants’ perceptions of the argumentation lessons questionnaire. For the data analysis, the Wilcoxon Signed Rank Test, the Mann–Whitney U-test and qualitative techniques were used. Results : The results of the study indicated that an argumentation-based intervention caused significantly better acquisition of scientific reaction rate-related concepts and positively impacted the structure and complexity of pre-service teachers’ argumentation. Moreover, the majority of the participants reported positive feelings toward argumentation activities. Conclusions : As students are encouraged to state and support their view in the chemistry classroom when studying reaction rate, it was observed that their understanding increased in terms of both the context and the quality of the argumentation that they produced. In light of the findings, it is suggested that argumentation activities should be developed to promote students’ science content knowledge and argumentation skills.
    Research in Science and Technological Education 12/2013; 32(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work.Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students’ views of scientists.Sample An urban, fifth-grade, European elementary school classroom defined the context of this study.Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students’ initial views of scientists were investigated through a drawing activity, classroom discussions and interviews.Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist.Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school–scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.
    Research in Science and Technological Education 01/2013; 31(1):90-115.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The research on which this article is based was commissioned because of concerns about perceived shortages of willing and able young people choosing to study physics at university. Purpose This article reports on first year physics undergraduates’ narratives of why they are studying physics and uses these narratives to identify reasons for their choice. Design and method Narrative-style interviewing with a purposive sample of first year undergraduates yielded data that revealed complexities around decision making, including choice of university course. Analysis of the texts was informed by psychoanalytical notions rooted in the work of Sigmund Freud. These psychoanalytical notions were used both in generating the interview data – the undergraduate volunteer interviewees were conceptualised as ‘defended subjects’ – and in analysing these interviews in order to conjecture how unconscious forces might figure in young people’s decision making. Results After analysing the interviews with physics undergraduates, with respect to the question ‘why are they reading physics?’, the claim is that identification with a key adult is an important element in an individual’s participation. On the other hand, we discerned no evidence that experience of the sorts of innovation typically designed to increase physics uptake – for example ‘fun projects’ or competitions – had been key with respect to a desire to read physics. Conclusion Attempts to recruit more students to university to study physics should note that a young person who identifies with a significant adult associated with physics, typically a teacher or family member, is in a good position to believe that physics is a subject that is worth studying.
    Research in Science and Technological Education 01/2013; 31(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cooperative learning is an active learning approach in which students work together in small groups to complete an assigned task. Students commonly find the subject of ‘physical and chemical changes’ difficult and abstract, and thus they generally have many misconceptions about it. Purpose This study aimed to investigate the effects of jigsaw cooperative learning activities developed by the researchers on sixth grade students’ understanding of physical and chemical changes. Sample Participants in the study were 61 sixth grade students in a public elementary school in Izmir, Turkey. Design and methods A pre-test and post-test experimental design with a control group was used, and students were randomly assigned to the experimental and control groups. Instruction of the subject was conducted via jigsaw cooperative learning in the experimental group and via teacher-centered instruction in the control group. During the jigsaw process, experimental group students studied the subjects of changes of state, changes in shape and molecular solubility from physical changes, and acid–base reactions, combustion reactions and changes depending on heating from chemical changes in their jigsaw groups. Results The concept test results showed that jigsaw cooperative learning instruction yielded significantly better acquisition of scientific concepts related to physical and chemical changes, compared to traditional learning. Students in the experimental group had a lower proportion of misconceptions than those in the control group, and some misconceptions in the control group were identified for the first time in this study. Conclusions Jigsaw cooperative learning is an effective teaching technique for challenging sixth grade students’ misconceptions in the context of physical and chemical changes, and enhancing their motivation, learning achievements, self-confidence and willingness in the science and technology lesson. This technique could be applied to other chemistry subjects and other grade levels.
    Research in Science and Technological Education 01/2013; 31(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students’ understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test–post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test–post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students’ understanding of science.
    Research in Science and Technological Education 01/2013; 31(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students’ attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design.Purpose: We examined the degree to which lab experiences are explained by a GI or a PB lab style vs. students’ attitudes towards specific aspects of the experience, reflected by perceived excitement (exc), difficulty (dif), time efficiency (eff) and association between lab and lecture material (help).Sample: Approximately 1000 students attending first-semester, college biology lab for science majors at the University of Colorado at Boulder, USA, participated in the study.Design and method: In 2007, two labs were run as GI and one as PB. Formats were switched in 2008. Attitudes were assessed with a post-semester survey.Results: Only the four attitude variables (not lab style) had a strong relationship with overall lab rating which was most strongly related to exc, followed by dif and help/eff. Dif and eff had the greatest influence on attitudes for or against GI vs. PB labs, and help and exc had little influence on a GI vs. a PB lab. Also, when dif was low, students’ attitudes were not significantly different between PB and GI labs, but when dif was high, students’ significantly rated GI labs higher than PB labs.Conclusions: Students’ attitudes towards lab are more dependent on specific aspects of the experience than on lab style. Changes in GI vs. PB lab styles primarily influence dif and eff rather than exc and help. Dif may be an important factor to consider when implementing a lab in the PB vs. the GI format. It might be good to go with a GI when dif is high and a PB when dif is low.
    Research in Science and Technological Education 11/2011; 29(3):241-255.

Related Journals