Bulletin of Materials Science Journal Impact Factor & Information

Publisher: Indian Academy of Sciences; Materials Research Society of India; Indian National Science Academy, Indian Academy of Sciences

Journal description

The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.

Current impact factor: 1.02

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.017
2013 Impact Factor 0.87
2012 Impact Factor 0.584
2011 Impact Factor 0.88
2010 Impact Factor 0.944
2009 Impact Factor 0.783
2008 Impact Factor 0.858
2007 Impact Factor 0.603
2006 Impact Factor 0.522
2005 Impact Factor 0.777
2004 Impact Factor 0.554
2003 Impact Factor 0.529
2002 Impact Factor 0.34
2001 Impact Factor 0.465
2000 Impact Factor 0.393
1999 Impact Factor 0.319
1998 Impact Factor 0.287
1997 Impact Factor 0.296
1996 Impact Factor 0.278
1995 Impact Factor 0.233
1994 Impact Factor 0.146
1993 Impact Factor 0.225
1992 Impact Factor 0.244

Impact factor over time

Impact factor

Additional details

5-year impact 1.28
Cited half-life 7.70
Immediacy index 0.07
Eigenfactor 0.00
Article influence 0.27
Website Bulletin of Materials Science website
Other titles Bulletin of materials science (Online)
ISSN 0250-4707
OCLC 51172816
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Indian Academy of Sciences

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Conditions
    • Publisher's version/PDF must be used
    • On author's personal website and/or institutional repository
    • All titles are open access journals
  • Classification
    ​ green

Publications in this journal

  • Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0951-7
  • Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0928-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper addresses the weldability, microstructure and mechanical properties of the multi-pass welding of super-duplex stainless steel (SDSS). Pulsed current gas tungsten arc welding (PCGTAW) was carried out employing ER2553 and ERNiCrMo-4 fillers. Microstructure examination showed the presence of austenite in different forms at the weld zone of ER2553 whereas multi-directional grain growth was observed for ERNiCrMo-4 welds. Tensile and impact studies corroborated that the weldments employing ER2553 exhibited better results compared with ERNiCrMo-4 weldments. Detailed structure–property relationships of the weldments have been reported in the present study. The results corroborated that the enhanced properties could be achieved with the matching filler wire compared with the over-alloyed filler.
    Bulletin of Materials Science 08/2015; 38(4):1-10. DOI:10.1007/s12034-015-0915-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabrication of TiO2 nanoporous films was carried out by anodic oxidation using two-step voltage mode while the subsequent attaching of the photosensitizer 5,10,15,20-tetra(4-carboxyphenyl) porphyrin (TCPP) on the prepared TiO2 nanoporous films was carried out by the electrochemical method. Photoelectrochemical properties of TiO 2 nanoporous films attached with and without photosensitizer TCPP were analysed by fluorescence spectroscopy and electrochemical test. Effects of process parameters on the photoelectrochemical properties of TiO2 nanoporous films were also investigated. The optimized process parameters for the preparation of TiO2 nanoporous films with the best photoelectrochemical property can be concluded as follows: oxidation potentials is 70–140 V, oxidation temperature is 25∘C, H2SO4 electrolyte concentration is 0.5 mol l−1 and oxidation time is 60 min. The results also show that attaching of the photosensitizer TCPP on the TiO2 nanoporous films can indeed improve the properties of TiO2 nanoporous films, and the optimized attaching temperature and attaching voltage are 25∘C and 60 V, respectively.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0950-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transport behaviour of three organic solvents (benzene, toluene and xylene) through halloysite nanotubes (HNTs) filled ethylene–vinyl acetate (EVA) copolymer composites have been investigated in the temperature range 303–323 K. The effects of HNTs loading, nature of solvent and temperature on the transport behaviour of solvents through composites were studied. It has been observed that all the systems follow a Fickian mode of transport on increasing temperature. The solvent uptake and sorption coefficient decreases with the increase in halloysite loading while diffusion coefficients and permeation coefficients were found to be dependent on the concentration of filler. The percentage of bounds rubber content and swelling ratio decreases up to 7.5 phr filler content, whereas above 7.5 phr filler loading were found to be increased due to poor dispersion of halloysite in EVA copolymer matrix. The transport behaviour of three organic solvents was further validated by their crosslink density values. The thermodynamic parameters such as enthalpy, entropy and free energy of sorption were evaluated. The positive values of free energy indicate the non-spontaneity of the sorption of HNTs filled EVA in aromatic solvents at 303 K.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0934-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study reports on the kinetics of borided Nickel 201 alloy. The thermochemical treatment of boronizing was carried out in a solid medium consisting of B4C and KBF4 powders mixture at 1123, 1173 and 1223 K for 2, 4 and 6 h, respectively. The boride layer was characterized by optical microscopy, X-ray diffraction technique and micro-Vickers hardness tester. X-ray diffraction analysis revealed the existence of NiB, Ni2B, Ni3B and Ni4B3 compounds at the surface of borided Nickel 201 alloy. The thickness of the boride layer increased with an increase in the boriding time and the temperature. The hardness of the nickel borides formed on the surface of the nickel substrate ranged from 1642 to 1854 HV0.05, whereas the Vickers hardness value of the untreated nickel was 185 HV 0.05. The growth kinetics of boride layers forming on the borided Nickel 201 alloy was also analysed. The boron activation energy (Q) was estimated as equal to 203.87 kJ mol-1 for the borided Nickel 201 alloy.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0931-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: BiMnO3 (BMO) and Ca (10 at%) substituted BiMnO3 (BCMO) thin films are grown on n-type Si (100) and Pt/Ti/SiO2/Si (100) substrates by RF magnetron sputtering. The structural, elemental, morphological, magnetic, dielectric and ferroelectric properties of the films are investigated by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX), atomic force microscope (AFM), vibrating sample magnetometer (VSM), dielectric and ferroelectric measurements, respectively. The XRD pattern shows that the films acquire monoclinic structure with C2 space group. The elemental composition and surface roughness of the films are also measured by EDAX and AFM analysis, respectively. The VSM results exhibit that all the films possess room temperature ferromagnetism and the BCMO film deposited on the Si substrate has better magnetic properties (M rem = 1.8 × 10−3 emu cm−3) than the other films. The dielectric measurement also reveals that the BCMO film has the highest value of dielectric constant (497) with less dielectric loss (0.3). Similarly, the ferroelectric measurement implies that all the films possess room temperature ferroelectricity.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0926-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of deuterated potassium dihydrogen phosphate (DKDP) crystals with different degrees of deuteration are grown from aqueous solution by the point-seed technique. The microhardness of (100), (001) and so-called ‘tripler’ faces for these DKDP crystals were measured. Initially the hardness number of (001) face for each crystal increases with the increase of the applied load until it reaches 25 g. With further increase in load, the hardness number decreases gradually. The hardness numbers decline with the increase in deuterium content. These composition dependences are expected since the bond strength is weakened by the substitution of deuterium for hydrogen. The hydrogen bond is considered to play the key role in effecting the crystal’s hardness. The visible hardness anisotropy of the different faces is attributed to the inhomogeneous distribution of the oxygen–hydrogen bond on these faces.
    Bulletin of Materials Science 08/2015; 38(4):1049–1053. DOI:10.1007/s12034-015-0858-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: The processes for obtaining crystalline and smooth poly(vinylidene fluoride) (PVDF) thin films using 2-butanone solvent are explored. The in-situ substrate temperature has been systematically controlled to observe the crystallization process. The in-situ substrate temperature is manipulated to control the rate of evaporation of 2-butanone solvent and is found to have played a vital role in the crystallization of PVDF thin films. Further, X-ray diffraction and Raman microscope were utilized to understand the crystalline phase of PDVF thin films, while atomic force microscopy and scanning electron microscopy have been utilized to investigate the surface morphology and surface roughness of the films.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0894-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anion surfactants, sodium dodecyl sulphate (SDS) and sodium lauric acid (SLA), with almost the same chain length but different anion groups were used together as intercalates to prepare intercalated ZnAl–layered double hydroxides (ZnAl–LDHs). Their composition, structure and morphology were characterized by Fourier transform infrared, X-ray fluorescence, thermogravimetric and X-ray diffraction (XRD). The results indicated SDS intended to maintain the lamellae structure of LDHs, but SLA was more likely to expand the basal spacings of LDHs in the present system. The arrangement of the surfactants in the interlayer of ZnAl–LDHs was also simulated by Materials Studio. The basal spacings of the LDHs calculated based on simulated structure consisted with that from XRD.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0956-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present investigation, mechanical and spectroscopic properties of glass composites have been investigated. The glass composites have been prepared by the milling technique instead of using any filler particle. Due to the presence of different alkaline earth modifiers in composites, marked difference in their strength and optical properties is observed. The band gap, Urbach energy and the extinction coefficient of the glass composites have been calculated using UV–visible spectroscopy. Moreover, the real and imaginary dielectric constants have also been calculated for all the composites in addition to the Weibull statistics and cumulative probability of failure. The results have been discussed in light of comparison between the glass composites and the individual glasses. The mechanical and optical properties indicate marked effect on the mechanical strength, band gap and Urbach energy for glass composites as compared with the individual glasses.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0947-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Horizontally aligned and densely packed multiwalled carbon nanotubes (MWCNTs) were synthesized in an open air, without the need for a controlled atmosphere, using a rotating cathode arc discharge method with the help of a metal scraper. The physical force exerted by the scraper results in in-situ alignment of MWCNTs along the direction of scrape marks. This strategy, which enables the alignment of nanotubes in a controlled fashion to any length and direction of interest, was examined to determine the force required to align a nanotube. A model is developed to understand the alignment process. Using the nanoscratch technique to mimic this strategy, and incorporating the data obtained from the nanoscratch technique into the model developed, the minimum force required to align a MWCNT, as well as the energy required to align a gram of nanotubes, has been estimated. The method demonstrated represents an economical approach for large-scale synthesis of aligned MWCNTs at low costs.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0948-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conductivity measurements have been made on x V 2O5 − (100−x) [0.5 Na2O + 0.5 B2O3] (where 10 ≤ x ≤ 50) glasses prepared by using microwave method. DC conductivity (σ) measurements exhibit temperature-and compositional-dependent trends. It has been found that conductivity in these glasses changes from the predominantly ‘ionic’ to predominantly ‘electronic’ depending upon the chemical composition. The dc conductivity passes through a deep minimum, which is attributed to network disruption. Also, this nonlinear variation in σ dc and activation energy can be interpreted using ion–polaron correlation effect. Electron paramagnetic resonance (EPR) and impedance spectroscopic techniques have been used to elucidate the nature of conduction mechanism. The EPR spectra reveals, in least modified (25 Na2O mol%) glasses, conduction is due to the transfer of electrons via aliovalent vanadium sites, while in highly modified (45 Na2O mol%) glasses Na+ ion transport dominates the electrical conduction. For highly modified glasses, frequency-dependent conductivity has been analysed using electrical modulus formalism and the observations have been discussed.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0958-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sintered Al2O3–LaPO4 composites were prepared using commercially available reactive alumina and phase pure lanthanum phosphate (LP), prepared by the reaction synthesis technique. LP content was varied between 10 and 50 wt% and sintering was carried out between 1400 and 1600 ∘ C. Sintered composites were characterized for phase analysis, densification, strength, machinability, microstructure and bioactivity (in SBF solution) and biocompatibility (MTT assay protocol) studies. Composite nature was confirmed by phase analysis and LP was found to reduce the densification and strength values but imparted machinability. Again positive bioactivity and biocompatibility character were observed for all the compositions.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0955-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, the synthesis and characterization of palladium nanoparticle-reduced graphene oxide hybrid (Pd–rGO) material is reported. Techniques of X-ray diffraction, transmission electron microscope (TEM), energy-dispersive X-ray, FT-IR spectroscopy, thermogravimetric analysis and cyclic voltammetry were used to characterize the structure and properties of the Pd–rGO. Results demonstrate the effect of Pd on the reduced GO. The average particle size of the Pd nanoparticles supported on rGO obtained from TEM is about 12–18 nm. Moreover, glassy carbon electrode (GCE) modified with palladium nanoparticle–graphene oxide hybrid (Pd–rGO/GCE) was prepared by casting of the Pd–rGO solution on GCE. The electrochemical and catalytic activity of the Pd–rGO/GCE was studied in 0.1 M H2SO4 solution. The Pd–rGO/GCE electrode exhibited remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). At potential more negative than −0.4 V vs. Ag |AgCl |KCl3M, the current is mainly due to hydrogen evolution reaction. Finally, the kinetic parameters of hydrogen evolution reaction are also discussed on the Pd–rGO/GCE.
    Bulletin of Materials Science 08/2015; DOI:10.1007/s12034-015-0954-4