Journal of Energy Resources Technology (J ENERG RESOUR-ASME )

Publisher: American Society of Mechanical Engineers; American Society of Mechanical Engineers. Petroleum Division; American Society of Mechanical Engineers. Ocean Engineering Division

Description

Addressing the wide-ranging topic areas of petroleum drilling, production, refining, processing, transportation, and equipment and vehicles for sea underwater usage, the Journal presents peer-reviewed technical papers as well as briefs which are an excellent way to present new computing algorythms, experience with new measurement devices, evaluation studies, etc. Specific areas of importance include (but are not limited to): offshore mechanics and technology; ice-water-structure interactions; ocean engineering drilling and production; riser mechanics and transportaton; rock and material mechanics for energy resources; emerging technologies in oil shale; advanced energy resources-systems-analyses; fundamental combustion ofenergy resources; energy resource recovery from biomass and solid wastes; petroleum equipment and design; and ecomonics of energy resource exploitation.

  • Impact factor
    1.07
    Show impact factor history
     
    Impact factor
  • 5-year impact
    0.93
  • Cited half-life
    0.00
  • Immediacy index
    0.25
  • Eigenfactor
    0.00
  • Article influence
    0.24
  • Website
    Journal of Energy Resources Technology website
  • Other titles
    Journal of energy resources technology
  • ISSN
    0195-0738
  • OCLC
    4871033
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publications in this journal

  • [show abstract] [hide abstract]
    ABSTRACT: Stuck pipe is known to be influenced by drilling fluid properties and other parameters, such as the characteristics of rock formations. In this paper, we develop a support-vector-machine (SVM) based model to predict stuck pipe during drilling design and operations. To develop the model, we use a dataset, including stuck and nonstuck cases. In addition, we develop radial-base-function (RBF) neural network based model, using the same dataset, and compare its results with the SVM model. The results show that the performance of both models for prediction of stuck pipe does not differ significantly and both of them have highly accurate and can be used as the heart of an expert system to support drilling design and operations. [DOI: 10.1115/1.4026917]
    Journal of Energy Resources Technology 03/2014; 136.
  • [show abstract] [hide abstract]
    ABSTRACT: To investigate the effects of fuel temperature on the injection process in the fuel-injection pipe and the combustion characteristics of compression ignition (CI) engine, tests on a four stroke, direct injection dimethyl ether (DME) engine were conducted. Experimental results show that as the fuel temperature increases from 20 to 40 °C, the sound speed is decreased by 12.2%, the peak line pressure at pump and nozzle sides are decreased by 7.2% and 5.6%, respectively. Meanwhile, the injection timing is retarded by 2.2 °CA and the injection duration is extended by 0.8 °CA. Accordingly, the ignition delay and the combustion duration are extended by 0.7 °CA and 4.0 °CA, respectively. The cylinder peak pressure is decreased by 5.4%. As a result, the effective thermal efficiency is decreased, especially for temperature above 40 °C. Before beginning an experiment, the fuel properties of DME, including the density, the bulk modulus, and the sound speed were calculated by "ThermoData." The calculated result of sound speed is consistent with the experimental results.
    Journal of Energy Resources Technology 12/2013; 135(4):422021-422025.
  • Journal of Energy Resources Technology 10/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: The increasing complexities of wellbore geometry imply an increasing potential of damage resulting from the casing-wear downhole. Much work has been done to quantify and estimate wear in casing; however, the results of such predictions have been mixed. While the locations of critical-wear areas along the casing string have been predicted fairly accurately, quantifying the actual amount of casing wear has been a magnitude off. A mathematical model that describes this casing wear in terms of the total wellbore energy has been developed and used to estimate the depth of the wear groove and the wear volume downhole. The wellbore energy provides a mathematical criterion to quantify the borehole quality and incorporates the parameters, borehole curvature, and the wellbore torsion. The casing wear observed downhole is also an integral function of these two parameters. Hence, a combined “wear-energy” model has been proposed to estimate the casing wear in curved sections of the wellbore that have the drill string lying on its low side. The fundamental assumption of this model is that the volume worn away from the casing wall is proportional to the work done by friction on its inner wall by the tool joints only. It also assumes that the primary mechanism for casing wear is the rotation of the drill string, and the wear caused during tripping is insignificant. The borehole torsion models of wellbore trajectory, namely spatial-arc, natural-curve, cylindrical-helix, and constant-tool face, have been incorporated separately to enhance the accuracy of estimating the wear volume downhole. The wear-energy model for a detailed analysis of a practical example using real-time well survey data will be presented. Wear zones along the wellbore have been identified using a mathematical criterion of the “contact zone parameter.” The wear-groove depths for each contact zone along with an equivalent average wear for the curved section of the wellbore have been estimated. The wear volumes predicted by the various curvature and torsion models of wellbore energy have been graphically studied. The wellbore torsion has been found to significantly impact the casing-wear downhole.
    Journal of Energy Resources Technology 05/2013; 135(4):042901 - 042908.
  • [show abstract] [hide abstract]
    ABSTRACT: Blended fuels such as biodiesel–diesel blends are being extensively used in practical devises such as engines. The burning characteristics of blended fuels are quite different than that of the individual fuels and need to be understood. In this study, a semiempirical analysis concerning the mass burning rate characteristics of biodiesel–diesel blends is presented based on the data measured using porous sphere experiments. Finally, a correlation for evaluating instantaneous burning rate of biodiesel–diesel blended fuels has been proposed for practical applications. Further, using this correlation, transient burning characteristics of blended biodiesel–diesel droplet in suspended mode have been studied for different blend compositions. Multiple modes of burning regimes are identified for the blended fuels.
    Journal of Energy Resources Technology 02/2013; 135(2).
  • [show abstract] [hide abstract]
    ABSTRACT: In developing a wave energy converter (WEC), assessing and rating the device is a difficult, but important issue. Conventionally, a large scaled device (maybe large enough for accommodating a power takeoff (PTO) system) or prototype device is needed to be tested in wave tanks or in seas in different wave conditions so that a power matrix for the device can be defined using scaling or interpolation/extrapolation methods. Alternatively, a pure numerical simulation in time-domain may be used for assessing the power capture capacities of wave energy devices. For the former, it is convincing, but can be especially difficult in the early stages of development, when small scaled models are normally used; and for the latter, the pure numerical simulation may not be very reliable and convincing, especially when the dynamic problem is very complicated. In this paper, a method for assessing the captured wave power for a device from its power capture response is presented. In the proposed method, a measured or calculated linear power capture response of the device is combined with wave spectrum to compute the average captured power function. Once the average captured power function is obtained, the overall average captured power corresponding to the wave state can be easily calculated. If a linear power capture response is obtained from a model test, the power assessment based on this proposed method can be very convincing and reliable. To illustrate the application of the proposed method, an example of a fully linear dynamic system, including the linear hydrodynamics of the floating structure and a linear power takeoff, is considered. For such a system, the frequency-domain analysis can be employed to obtain the performance of the floating device under waves and the power takeoff system. The hydrodynamic performance of the wave energy converter is then used to define the power capture response and to calculate the average captured power functions in different sea states. Then, the captured power of the device in different sea states, i.e, the power matrix, can be calculated, and accordingly, the device can be assessed and rated. To validate the proposed method, a time-domain analysis is also performed for a cross-check. In the time-domain analysis, the hydrodynamic coefficients and responses are first assessed in frequencydomain, and then transformed into the relevant terms by means of impulse response functions for establishing the time-domain (TD) equation. By comparing the results from frequency-domain and time-domain analyses of irregular waves, it can be concluded that the proposed wave energy capture assessment method can be used in assessing or rating the device.
    Journal of Energy Resources Technology 12/2012;
  • Journal of Energy Resources Technology 11/2012; 134(1):1-5.
  • Journal of Energy Resources Technology 10/2012;
  • [show abstract] [hide abstract]
    ABSTRACT: Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the renormalization group (RNG) k-epsilon (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 mu m and 125 mu m were obtained for the RANS and LES cases, respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-epsilon model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl nine-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost. [DOI: 10.1115/1.4007216]
    Journal of Energy Resources Technology 09/2012; 134(3).
  • Journal of Energy Resources Technology 09/2012; 134(3).
  • Journal of Energy Resources Technology 01/2012;
  • Journal of Energy Resources Technology 09/2011;
  • Journal of Energy Resources Technology 09/2011; 133(3):031201 (9 pages).

Related Journals