Meteorology and Atmospheric Physics (METEOROL ATMOS PHYS )

Publisher: Springer Verlag


Meteorology and Atmospheric Physics will accept original research papers for publication following the recommendations of a review panel. The emphasis lies with the following topic areas: atmospheric dynamics and general circulation; synoptic meteorology; weather systems in specific regions such as the tropics the polar caps the oceans; atmospheric energetics; numerical modeling and forecasting; physical and chemical processes in the atmosphere including radiation optical effects electricity and atmospheric turbulence and transport processes: mathematical and statistical techniques applied to meteorological data sets Meteorology and Atmospheric Physics discusses physical and chemical processes - in both clear and cloudy atmospheres - including radiation optical and electrical effects precipitation and cloud microphysics.

  • Impact factor
    Show impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Meteorology and Atmospheric Physics website
  • Other titles
    Meteorology and atmospheric physics (Online)
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Trends in air temperature and precipitation data are investigated for linkages to global warming and climate change. After checking for serial correlation with trend-free pre-whitening procedure, the Mann–Kendall test is used to detect monotonic trends and the Mann–Whitney test is used for trend step change. The case study is Maharlo watershed, Southwestern Iran, representing a semi-arid environment. Data are for the 1951–2011 period, from four temperature sites and seven precipitation sites. A homogeneity test investigates regional similarity of the time series data. The results include mean annual, mean annual maximum and minimum and seasonal analysis of air temperature and precipitation data. Mean annual temperature results indicate an increasing trend, while a non-significant trend in precipitation is observed in all the stations. Furthermore, significant phase change was detected in mean annual air temperature trend of Shiraz station in 1977, indicating decreasing trend during 1951–1976 and increasing trend during 1977–2011. The annual precipitation analysis for Shiraz shows a non-significant decrease during 1951–1976 and 1977–2011. The result of homogeneity test reveals that the studied stations form one homogeneous region. While air temperature trends appear as regional linkage to global warming/global climate change, more definite outcome requires analysis of longer time series data on precipitation and air temperature.
    Meteorology and Atmospheric Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we examine the mass distributions, direct and semi-direct effects of different biomass burning aerosols (BBAs) over South Africa using the 12-year runs of the Regional Climate Model (RegCM4). The results were analyzed and presented for the main BB season (July–October). The results show that Mpumalanga, KwaZulu Natal and the eastern parts of Limpopo are the main local source areas of BBAs in South Africa. In comparison to carbonaceous aerosols, BB-induced sulfate aerosol mass loading and climatic effects were found to be negligible. All carbonaceous aerosols reduce solar radiation at the surface by enhancing local atmospheric radiative heating. The climatic feedback caused by BBAs, resulted in changes in background aerosol concentrations. Thus, on a regional scale, climatic effects of BBAs were also found in areas far away from the BBA loading zones. The feedback mechanisms of the climate system to the aerosol radiative effects resulted in both positive and negative changes to the low-level columnar averaged net atmospheric radiative heating rate (NAHR). Areas that experienced an NAHR reduction showed an increase in cloud cover (CC). During the NAHR enhancement, CC over arid areas decreased; whereas CC over the wet/semi-wet regions increased. The changes in surface temperature (ST) and surface sensible heat flux are more closely correlated with BBA semi-direct effects induced CC alteration than their direct radiative forcing. Furthermore, decreases (or increases) in ST, respectively, lead to the reductions (and enhancements) in boundary layer height and the vice versa on surface pressure. The direct and semi-direct effects of BBAs also jointly promoted a reduction and rise in surface wind speed that was spatially highly variable. Overall, the results suggest that the CC change induced by the presence of radiatively interactive BBAs is important to determine alterations in other climatic variables.
    Meteorology and Atmospheric Physics 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the period from 12 to 15 April, 2009 nearly the entire Iran, apart from the southern border, experienced an advective cooling event. While winter freezing concerns are typical, the nature of this freezing event was unusual with respect to its date of occurrence and accompanying synoptic meteorological situation. To analyze the freezing event, the relevant meteorological data at multiple levels of the atmosphere were examined from the NCEP/NCAR reanalysis dataset. The results showed that a polar vortex was responsible for the freezing event over the country extending southward extraordinarily in such a way that its ridge influenced most parts of Iran. This was recognized as an abnormal extension of a polar vortex in the recent years. The sea-level pressure fields indicated that a ridge of large-scale anticyclone centered over Black Sea extended southward and prevailed over most parts of Iran. This resulted in the formation of a severe cold air advection from high latitudes (Polar region) over Iran. During the study period, moisture pumping was observed from the Arabian Sea and Persian Gulf. The winds at 1000 hPa level blew with a magnitude of 10 m s-1 toward south in the region of convergence (between -2 × 10-6 s-1 and -12 × 10-6 s-1). The vertical profiles of temperature and humidity also indicated that the ICE structural icing occurred at multiple levels of the atmosphere, i.e, from 800 hPa through 400 hPa levels. In addition to the carburetor (or induction), icing occurred between 900 and 700 hPa levels in the selected radiosonde stations during the study period. In addition, the HYSPLIT backward trajectory model outputs were in quite good agreement with the observed synoptic features.
    Meteorology and Atmospheric Physics 03/2014; 124(1-2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present paper, we have characterized the ambient ammonia over Delhi along with other trace gases (NH3, NO, NO2, SO2 and CO) and particulates (PM2.5 and PM10) measured during December 2011 to June 2012. The average mixing ratios of ambient NH3, NO, NO2, SO2 and CO were recorded as 21.2 ± 5.4, 19.5 ± 4.9, 17.4 ± 1.4, 1.7 ± 0.5 ppb and 1.6 ± 0.7 ppm, respectively, during winter, whereas the average mixing ratios of ambient NH3, NO, NO2, SO2 and CO were recorded as 20.8 ± 4.7, 21.7 ± 6.3, 16.8 ± 3.1, 2.2 ± 0.8 ppb and 1.8 ± 0.9 ppm, respectively, during summer. In the present case, non-significant seasonal and diurnal variations of NH3, NO, NO2, SO2 and CO were observed during both the seasons. The average monthly NH3/NH4 + ratios varied from 0.28 to 2.56 with an average value of 1.46 in winter. The higher NH3/NH4 + ratio (3.5) observed in summer indicates the abundance of NH3 in the atmosphere during summer. The higher fraction of particulate NH4 + observed in winter than summer attributes to the conversion of gaseous NH3 into NH4 +. The results emphasized that the traffic could be one of the significant sources of ambient NH3 at the urban site of Delhi as illustrated by positive correlations of NH3 with traffic-related pollutants (NO, NO2 and CO). Surface wind analysis and wind directions also support the roadside traffic and agricultural activities at the nearby area indicating possible major sources of ambient NH3 at the study site.
    Meteorology and Atmospheric Physics 03/2014; 124(1-2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Following a description of the climatology of the boreal summer persistent low temperature (LT) events of the Northeast (NE) China, this paper explores the synoptic characteristics of these events by decomposing atmospheric variables into three components: the daily climate, the zonal-averaged anomaly and the synoptic-scale anomaly. The synoptic-scale anomaly is used to construct the anomalous synoptic charts which tend to perform better compared to traditionally defined synoptic charts in terms of revealing synoptic characteristics of these LT events. Based on the analysis of 21 persistent LT events occurring during summers of 1961-2008 in NE China, we show that temperature anomaly at 850 hPa and geopotential height anomaly at 300 hPa were two critical early signals prior to the occurrences of these persistent LT events.
    Meteorology and Atmospheric Physics 03/2014; 124(1-2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, efforts are made to improve the simulation of heavy rainfall events over National Capital Region (NCR) Delhi during 2010 summer monsoon, using additional observations from automatic weather stations (AWS). Two case studies have been carried out to simulate the relative humidity, wind speed and precipitation over NCR Delhi in 48-h model integrations; one from 00UTC, August 20, 2010, and the other from 00UTC, September 12, 2010. Several AWS installed over NCR Delhi in the recent past provide valuable surface observations, which are assimilated into state-ofthe- art weather research and forecasting (WRF) model using the three-dimensional variational data assimilation (3DVAR). The quality of background error statistics (BES) is a key component in successful 3DVAR data assimilation in a mesoscale model. In this study, the domain-dependent regional background error statistics (RBS) are estimated using National Meteorological Center method in the months of August and September 2010 and then compared with the global background error statistics (GBS) in the WRF model. The model simulations are analyzed and validated against AWS and radiosonde observations to quantify the impact of RBS. The root mean square differences in the spatial distributions of precipitation, relative humidity and wind speed at the surface showed significant differences between both the global and regional BES. Similar differences are also observed in the vertical distributions along the latitudinal cross section at 28.5�N. Modelsimulated fields are analyzed at five different surface stations and one upper air station located in NCR Delhi. It is found that in 24-h model simulation, the RBS significantly improves the model simulations in case of precipitation, relative humidity and wind speed as compared to GBS.
    Meteorology and Atmospheric Physics 03/2014; 124(1-2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper studies the climatic conditions of warm and cold dry months in the humid and semi-humid Argentine region and some aspects of the regional circulation related to these cases. The climatic analysis of warm (temperatures above percentile 80) and cold (temperatures below percentile 20) dry months is based on precipitation and temperature data registered at reference stations over a period of at least 70 years, while the associated circulation is derived from daily data of geopotential height at 500 hPa from NCEP-DOE Reanalysis 2 database. The reference station for the center of the country registered a greater number of warm dry months during both the warm season (October-March) and the cold season (April-September), whereas the reference stations in the north-east and center-east showed differences depending on the time of the year, with more cold dry months during the April-September season and more warm dry months in the October-March season. A classification of daily fields of geopotential height anomalies at 500 hPa was used to analyze the atmospheric circulation related to warm and cold dry months. The circulation patterns were obtained by applying principal component analysis and cluster analysis. Findings show that some mid-level circulation patterns occur with a significant different frequency during the warm dry months or the cold dry months studied. Finally, cases of spatially extended precipitation-deficit conditions (hereinafter generalized droughts) were studied, noting dominant patterns that are coherent with the previous results.
    Meteorology and Atmospheric Physics 01/2014; 123(3-4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapid urbanization has intensified summer heat waves in recent decades in Beijing, China. In this study, effectiveness of applying high-reflectance roofs on mitigating the warming effects caused by urban expansion and foehn wind was simulated for a record-breaking heat wave occurred in Beijing during July 13–15, 2002. Simulation experiments were performed using the Weather Research and Forecast (WRF version 3.0) model coupled with an urban canopy model. The modeled diurnal air temperatures were compared well with station observations in the city and the wind convergence caused by urban heat island (UHI) effect could be simulated clearly. By increasing urban roof albedo, the simulated UHI effect was reduced due to decreased net radiation, and the simulated wind convergence in the urban area was weakened. Using WRF3.0 model, the warming effects caused by urban expansion and foehn wind were quantified separately, and were compared with the cooling effect due to the increased roof albedo. Results illustrated that the foehn warming effect under the northwesterly wind contributed greatly to this heat wave event in Beijing, while contribution from urban expansion accompanied by anthropogenic heating was secondary, and was mostly evident at night. Increasing roof albedo could reduce air temperature both in the day and at night, and could more than offset the urban expansion effect. The combined warming caused by the urban expansion and the foehn wind could be potentially offset with high-reflectance roofs by 58.8 % or cooled by 1.4 °C in the early afternoon on July 14, 2002, the hottest day during the heat wave.
    Meteorology and Atmospheric Physics 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study performed a three-dimensional regional-scale simulation of aerosol and cloud fields using a meso-scale non-hydrostatic model with a bin-based cloud microphysics. The representation of aerosols in the model has been improved to account for more realistic multi-modal size distribution and multiple chemical compositions. Two case studies for shallow stratocumulus over Northeast Asia in March 2005 were conducted with different aerosol conditions to evaluate model performance. Improved condensation nuclei (CN) and cloud condensation nuclei (CCN) are attributable to the newly constructed aerosol size distribution. The simulated results of cloud microphysical properties (cloud droplet effective radius, liquid water path, and optical thickness) with improved CN/CCN number are close to the retrievals from satellite-based observation. The effects of aerosol on the microphysical properties of shallow stratocumulus are investigated by model simulation, in terms of columnar aerosol number concentration. Enhanced aerosol number concentration results in increased liquid water path in humid case, but invariant liquid water path in dry case primarily due to precipitation occurrence. The changes of cloud microphysical properties are more predominant for small aerosol burden than for large aerosol burden with the retarded changes in cloud mass and size due to inactive condensation and collision-coalescence processes. Quantitative evaluation of sensitivity factor between aerosol and cloud microphysical properties indicates a strong aerosol-cloud interaction in Northeast Asian region.
    Meteorology and Atmospheric Physics 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study presents an analysis of the relationship between winter large-scale circulation and surface meteorological conditions over Greece for the period 1979-2009. The adopted methodology involves the application of an automated atmospheric circulation classification scheme based on the self-organizing map approach. The impact of each of the identified relevant 19 winter atmospheric circulation patterns on local meteorological condition is examined at seven sites by calculating the corresponding differences from the mean meteorological conditions. The conditional transition probabilities of circulation patterns indicate the existence of increased 1-day persistence, especially for the anticyclonic and the pattern related to Genoa depressions. Positive temperature anomalies are observed for the cyclonic patterns, while negative anomalies are attributed to the effect of anticyclonic circulation.
    Meteorology and Atmospheric Physics 01/2014; 124(3-4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, both reflectivity and radial velocity are assimilated into the Weather Research and Forecasting (WRF) model using ARPS 3DVAR technique and cloud analysis procedure for analysis and very short range forecast of cyclone A ´ ILA. Doppler weather radar (DWR) data from Kolkata radar are assimilated for numerical simulation of landfalling tropical cyclone. Results show that the structure of cyclone AILA has significantly improved when radar data is assimilated. Radar reflectivity data assimilation has strong influence on hydrometeor structures of the initial vortex and precipitation pattern and relatively less influence is observed on the wind fields. Divergence/convergence conditions over cyclone inner-core area in the low-to-middle troposphere (600–900 hPa) are significantly improved when wind data are assimilated. However, less impact is observed on the moisture field. Analysed minimum sea level pressure (SLP) is improved significantly when both reflectivity and wind data assimilated simultaneously (RAD-ZVr experiment), using ARPS 3DVAR technique. In this experiment, the centre of cyclone is relocated very close to the observed position and the system maintains its intensity for longer duration. As compared to other experiments track errors are much reduced and predicted track is very much closer to the best track in RAD-ZVr experiment. Rainfall pattern and amount of rainfall are better captured in this experiment. The study also reveals that cyclone structure, intensification, direction of movement, speed and location of cyclone are significantly improved and different stages of system are best captured when both radar reflectivity and wind data are assimilated using ARPS 3DVAR technique and cloud analysis procedure. Thus optimal impact of radar data is realized in RAD-ZVr experiment. The impact of DWR data reduces after 12 h forecast and it is due to the dominance of the flow from large-scale global forecast system model. Successful coupling of data assimilation package ARPS 3DVAR with WRF model for Indian DWR data is also demonstrated.
    Meteorology and Atmospheric Physics 01/2014;

Related Journals