Journal of Inorganic Biochemistry (J INORG BIOCHEM)

Publisher: Elsevier

Journal description

Journal of Inorganic Biochemistry publishes research papers and short communications in the following areas: the chemistry, structure, and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the preparation and properties of coordination complexes of biological interest including both structural and functional model systems; the role of metal-containing systems in the regulation of gene expression; the application of spectroscopic methods to determine the structure of metallobiomolecules; the function of trace elements in living systems; and related subjects.

Current impact factor: 3.44

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.444
2013 Impact Factor 3.274
2012 Impact Factor 3.197
2011 Impact Factor 3.354
2010 Impact Factor 3.317
2009 Impact Factor 3.252
2008 Impact Factor 3.133
2007 Impact Factor 3.663
2006 Impact Factor 2.654
2005 Impact Factor 2.423
2004 Impact Factor 2.225
2003 Impact Factor 2.343
2002 Impact Factor 2.204
2001 Impact Factor 1.729
2000 Impact Factor 1.46
1999 Impact Factor 1.463
1998 Impact Factor 1.162
1997 Impact Factor 1.342
1996 Impact Factor 1.459
1995 Impact Factor 1.399
1994 Impact Factor 1.478
1993 Impact Factor 1.405
1992 Impact Factor 1.361

Impact factor over time

Impact factor

Additional details

5-year impact 3.45
Cited half-life 8.20
Immediacy index 0.77
Eigenfactor 0.01
Article influence 0.72
Website Journal of Inorganic Biochemistry website
Other titles Journal of inorganic biochemistry (Online)
ISSN 0162-0134
OCLC 39039411
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
    Journal of Inorganic Biochemistry 12/2015; 153C:1-12. DOI:10.1016/j.jinorgbio.2015.09.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four new cationic Pd(II) and Pt(II) 5,5-diethylbarbiturate (barb) complexes, [M(barb)(bpma)]X•H2O [M = PdII, X = Cl (1); M = PtII, X = NO3− (2)] and [M(barb)(terpy)]NO3•0.5H2O [M = PdII (3); M = PtII (4)], where bpma = bis(2-pyridylmethyl)amine and terpy = terpyridine, were synthesized and characterized by elemental analysis, IR, UV−vis, NMR, ESI-MS and X-ray crystallography. The DNA binding properties of the cationic complexes were investigated by spectroscopic titrations, displacement experiments, viscosity, DNA melting and electrophoresis measurements. The results revealed that the complexes effectively bind to FS-DNA (fish sperm DNA) via intercalative/minor groove binding modes with intrinsic binding constants (Kb) in the range of 0.50 × 104–1.67 × 105 M−1. Absorption, emission and synchronous fluorescence measurements showed strong association of the complexes with protein (BSA) through a static mechanism. The mode of interaction of complexes towards DNA and protein was also supported by molecular docking. Complexes 1 and 3 showed significant nuclear uptake in HT-29 cells. In addition, 1 and 3 showed higher inhibition than cisplatin on the growth of MCF-7 and HT-29 cells and induced apoptosis on these cells much more effectively than the rest of the complexes as evidenced by pyknotic nuclear morphology. The levels of caspase-cleaved cytokeratin 18 (M30 antigen) in HT-29 cells treated with 1 and 3 increased in a dose-dependent manner, suggesting apoptosis. Moreover, qRT-PCR experiments showed that 1 and 3 caused significant increases in the expression of TNFRSF10B in HT-29 cells, indicating the initiation of apoptosis via cell surface death receptors.
    Journal of Inorganic Biochemistry 11/2015; 152:38-52. DOI:10.1016/j.jinorgbio.2015.08.026
  • Journal of Inorganic Biochemistry 10/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heart tissue becomes zinc-depleted and the capacity to mobilize labile zinc is diminished, indicating zinc dyshomeostasis during ischemia/reperfusion (I/R). Apparently, zinc pyrithione restores the basal zinc levels during I/R and prevents apoptosis by activating phosphatidyl inositol-3-kinase/Akt and targeting mitochondrial permeability transition. Receptor tyrosine kinases of the ErbB family (ErbB1 to ErbB4) are cell surface proteins that can regulate cell growth, proliferation and survival. Previous studies have shown that zinc pyrithione-induced activation of PI3kinase/Akt requires ErbB2 expression. On the other hand, while I/R decreases ErbB2 levels causing cardiomyocyte dysfunction and cell death, zinc pyrithione restores ErbB2 levels and maintains cardiomyocyte function. H9c2 cells expressed all the four ErbBs, although the expression of ErbB1 and ErbB2 were higher compared to ErbB3 and ErbB4. Hypoxia/Reoxygenation (H/R) had opposing effects on the mRNA expression of ErbB1 and ErbB2. ErbB2 mRNA levels were enhanced, but corresponding ErbB2 protein levels decreased after reoxygenation. H/R induced the degradation of ErbB2 in caspase-3 dependent manner, with the formation of a 25 kDa fragment. This fragment could be detected after H/R only upon treatment of the cells with a proteasomal inhibitor, ALLN, suggesting that caspase-mediated cleavage of 185 kDa ErbB2 results in C-terminal cleavage and formation of 25 kDa fragment, which is further degraded by proteasome. Heterodimerization and phosphorylation of ErbB2/ErbB1 which decreased upon reoxygenation, was promoted by zinc pyrithione. Zinc pyrithione effectively suppressed the caspase activation, decreased the proteolytic cleavage of ErbB2, enhanced the phosphorylation and activation of ErbB1-ErbB2 complexes and improved the cell survival after hypoxia/reoxygenation.
    Journal of Inorganic Biochemistry 09/2015; 153:49-59.
  • [Show abstract] [Hide abstract]
    ABSTRACT: [Ru(η6-p-cym)Cl{dpa(CH2)4COOEt}][PF6] (cym = cymene; dpa = 2,2’-dipyridylamine; complex 2) was prepared and characterized by elemental analysis, IR and multinuclear NMR spectroscopy, as well as ESI-MS and X-ray structural analysis. The structural analog without a side chain [Ru(η6-p-cym)Cl(dpa)][PF6] (1) as well as 2 were investigated in vitro against 518A2, SW480, 8505C, A253 and MCF-7 cell lines. Complex 1 is active against all investigated tumor cell lines while the activity of compound 2 is limited only to caspase 3 deficient MCF-7 breast cancer cells, however, both are less active than cisplatin. As CD4+ Th cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells, besides testing the in vitro antitumor activity of 1 and 2, the effect of ruthenium(II) complexes on the cells of the adaptive immune system have also been evaluated. Importantly, complex 1 applied in concentrations which were effective against tumor cells did not affect immune cell viability, nor did exert a general immunosuppressive effect on cytokine production. Thus, beneficial characteristics of 2 might contribute to the overall therapeutic properties of the complex.
    Journal of Inorganic Biochemistry 09/2015; DOI:10.1016/j.jinorgbio.2015.09.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electrogenerated chemiluminescence, ECL, reactions between tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)3](2+), and PAMAM GX.0 (X=1 and 2) dendrimers in an aqueous medium were carried out at pH10 (fully deprotonated dendrimer surface). ECL was detected in the presence of GX.0 dendrimers without addition of any known coreactant. Atomic force microscopy, AFM, measurements for GX.0 dendrimers in the presence of the [Ru(bpy)3](2+) complex were also done. AFM images showed the existence of aggregates (pillars) of globular shape, as well as interdendrimer networks forming fibers in the x-y direction for dendrimer aqueous solutions. ECL and AFM results in cooperation suggest that the coreactant effect of the end amine groups is improved by both the dendritic branched shells and the globular z-type aggregates. The ECL efficiency trends as a function of [GX.0] (whole range) can be interpreted taking into account the coreactant effect modulated by the presence of the z and x-y type aggregates. Importantly, ECL efficiency values can be taken as a measure of the change induced on the dendrimer aggregation in aqueous solutions when their concentrations rise. Redox potentials of the [Ru(bpy)3](3+/2+) couple in the presence of the G1.0 and G2.0 dendrimers were also determined. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Inorganic Biochemistry 07/2015; DOI:10.1016/j.jinorgbio.2015.06.021
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complexity and multifactorial nature of neurodegenerative diseases turn quite difficult the development of adequate drugs for their treatment. Multi-target analogues, in conjugation with natural moieties, have been developed in order to combine acetylcholinesterase (AChE) inhibition with antioxidant properties, metal-binding capacity and inhibition of amyloid-β (Aβ) aggregation. Due to the recent interest on natural-based drugs and also the importance of studying the role of transition metal ions in the disease process, we herein evaluate the copper chelating capacity and inhibitory ability for self- and Cu-induced Aβ1-42 aggregation of two nature-base hybrid model compounds obtained from conjugation of a tacrine moiety with a S-allylcystein (1) or S-propargylcystein (2) moiety. Both compounds show a moderate chelating power towards Cu(II) (pCu 7.13-7.51, CL/CCu=10, CCu=10(-6)M, pH7.4), with predominant formation of 1:1 complex species (CuL, CuH-1L) for which the coordination sphere involves the N-amide and the NH2 amine of the cysteine derivative as well as the NH of tacrine. The compounds are able to improve the inhibition of Aβ aggregation in the presence of Cu(II) and this is slightly more relevant for the allyl derivative (1), a stronger copper chelator, than for the propargyl (2). Moreover, the presence of a chloro atom in the tacrine moiety and the size of the chain length between the two NH groups appeared also to improve the inhibition capacity for Aβ aggregation. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Inorganic Biochemistry 06/2015; DOI:10.1016/j.jinorgbio.2015.06.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Inorganic Biochemistry 06/2015; DOI:10.1016/j.jinorgbio.2015.06.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structures of two stereoisomers of the chiral anion [VO2(N-salicylidene-isoleucinato)]− possessing three centers of chirality, the vanadium atom (configuration A/C) and the isoleucine moiety (configuration R/S on alpha and beta carbons), are presented. The absolute configuration of all available stereosiomers, CSS, ARR, CSR and ARS, was determined by electronic circular dichroism (ECD), which allows distinguishing between diastereomers, and by vibrational circular dichroism (VCD) capable of differentiating between all four stereoisomers. The comparison of experimental VCD and infrared (IR) spectra with simulated spectra for band assignment revealed the IR spectra of the diastereomers differing significantly in the C–H stretching region of the aromatic part in the molecule. Crystallization from binary systems composed of equal ratio of two stereoisomers of isoleucine, unveiled the lower solubility of CSS and ARR stereoisomers, while a longer crystallization time of the CSR and ARS stereoisomers allowed to proceed the vanadium-catalyzed epimerization, leading to the subsequent presence of the CSS and ARR stereoisomers in the product obtained.
    Journal of Inorganic Biochemistry 05/2015; 147:65. DOI:10.1016/j.jinorgbio.2015.01.011