Annual Review of Neuroscience (ANNU REV NEUROSCI )

Publisher: Annual Reviews

Description

  • Impact factor
    20.61
    Show impact factor history
     
    Impact factor
  • 5-year impact
    31.03
  • Cited half-life
    0.00
  • Immediacy index
    3.12
  • Eigenfactor
    0.03
  • Article influence
    17.08
  • Website
    Annual Review of Neuroscience website
  • Other titles
    Annual review of neuroscience
  • ISSN
    0147-006X
  • OCLC
    3505758
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

Annual Reviews

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Conditions
    • Must prominently state near the title of the preprint version that the article has been accepted for publication by Annual Reviews in a revised form
    • Authors may place their ePrint URL (free access to article) on one of author's personal website and one institutional website only
    • Publisher copyright and source must be acknowledged
    • Must link to publisher version
    • Publisher last contacted on 03/09/2014
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.
    Annual Review of Neuroscience 07/2014; 37:221-242.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuromodulation underlies many behavioral states and has been extensively studied in small circuits. This has allowed the systematic exploration of how neuromodulatory substances and the neurons that release them can influence circuit function. The physiological state of a network and its level of activity can have profound effects on how the modulators act, a phenomenon known as state dependence. We provide insights from experiments and computational work that show how state dependence can arise and the consequences it can have for cellular and circuit function. These observations pose a general unsolved question that is relevant to all nervous systems: How is robust modulation achieved in spite of animal-to-animal variability and degenerate, nonlinear mechanisms for the production of neuronal and network activity?
    Annual Review of Neuroscience 07/2014; 37:329-346.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activity-dependent changes in the strength of synaptic connections are fundamental to the formation and maintenance of memory. The mechanisms underlying persistent changes in synaptic strength in the hippocampus, specifically long-term potentiation and depression, depend on new protein synthesis. Such changes are thought to be orchestrated by engaging the signaling pathways that regulate mRNA translation in neurons. In this review, we discuss the key regulatory pathways that govern translational control in response to synaptic activity and the mRNA populations that are specifically targeted by these pathways. The critical contribution of regulatory control over new protein synthesis to proper cognitive function is underscored by human disorders associated with either silencing or mutation of genes encoding proteins that directly regulate translation. In light of these clinical implications, we also consider the therapeutic potential of targeting dysregulated translational control to treat cognitive disorders of synaptic dysfunction.
    Annual Review of Neuroscience 07/2014; 37:17-38.
  • [Show abstract] [Hide abstract]
    ABSTRACT: According to embodied cognition theories, higher cognitive abilities depend on the reenactment of sensory and motor representations. In the first part of this review, we critically analyze the central claims of embodied theories and argue that the existing behavioral and neuroimaging data do not allow investigators to discriminate between embodied cognition and classical cognitive accounts, which assume that conceptual representations are amodal and symbolic. In the second part, we review the main claims and the core electrophysiological findings typically cited in support of the mirror neuron theory of action understanding, one of the most influential examples of embodied cognition theories. In the final part, we analyze the claim that mirror neurons subserve action understanding by mapping visual representations of observed actions on motor representations, trying to clarify in what sense the representations carried by these neurons can be claimed motor.
    Annual Review of Neuroscience 07/2014; 37:1-15.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visual motion cues provide animals with critical information about their environment and guide a diverse array of behaviors. The neural circuits that carry out motion estimation provide a well-constrained model system for studying the logic of neural computation. Through a confluence of behavioral, physiological, and anatomical experiments, taking advantage of the powerful genetic tools available in the fruit fly Drosophila melanogaster, an outline of the neural pathways that compute visual motion has emerged. Here we describe these pathways, the evidence supporting them, and the challenges that remain in understanding the circuits and computations that link sensory inputs to behavior. Studies in flies and vertebrates have revealed a number of functional similarities between motion-processing pathways in different animals, despite profound differences in circuit anatomy and structure. The fact that different circuit mechanisms are used to achieve convergent computational outcomes sheds light on the evolution of the nervous system.
    Annual Review of Neuroscience 07/2014; 37:307-327.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Functional magnetic resonance imaging (fMRI) provides a unique view of the working human mind. The blood-oxygen-level-dependent (BOLD) signal, detected in fMRI, reflects changes in deoxyhemoglobin driven by localized changes in brain blood flow and blood oxygenation, which are coupled to underlying neuronal activity by a process termed neurovascular coupling. Over the past 10 years, a range of cellular mechanisms, including astrocytes, pericytes, and interneurons, have been proposed to play a role in functional neurovascular coupling. However, the field remains conflicted over the relative importance of each process, while key spatiotemporal features of BOLD response remain unexplained. Here, we review current candidate neurovascular coupling mechanisms and propose that previously overlooked involvement of the vascular endothelium may provide a more complete picture of how blood flow is controlled in the brain. We also explore the possibility and consequences of conditions in which neurovascular coupling may be altered, including during postnatal development, pathological states, and aging, noting relevance to both stimulus-evoked and resting-state fMRI studies.
    Annual Review of Neuroscience 07/2014; 37:161-181.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects. These signals are sent to the superior colliculus through different parts of the substantia nigra so that the animal looks preferentially at high-valued objects, but in different manners. Thus, relying on short-term value memories, the caudate head circuit allows the subject's gaze to move expectantly to recently valued objects. Relying on long-term value memories, the caudate tail circuit allows the subject's gaze to move automatically to previously valued objects. The basal ganglia also contain an equivalent parallel mechanism for action values. Such flexible-stable parallel mechanisms for object and action values create a highly adaptable system for decision making.
    Annual Review of Neuroscience 07/2014; 37:289-306.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in cell reprogramming enable investigators to generate pluripotent stem cells from somatic cells. These induced pluripotent cells can subsequently be differentiated into any cell type, making it possible for the first time to obtain functional human neurons in the lab from control subjects and patients with psychiatric disorders. In this review, we survey the progress made in generating various neuronal subtypes in vitro, with special emphasis on the characterization of these neurons and the identification of unique features of human brain development in a dish. We also discuss efforts to uncover neuronal phenotypes from patients with psychiatric disease and prospects for the use of this platform for drug development. Expected final online publication date for the Annual Review of Neuroscience Volume 37 is July 08, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Neuroscience 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adult neurogenesis, a developmental process of generating functionally integrated neurons, occurs throughout life in the hippocampus of the mammalian brain and showcases the highly plastic nature of the mature central nervous system. Significant progress has been made in recent years to decipher how adult neurogenesis contributes to brain functions. Here we review recent findings that inform our understanding of adult hippocampal neurogenesis processes and special properties of adult-born neurons. We further discuss potential roles of adult-born neurons at the circuitry and behavioral levels in cognitive and affective functions and how their dysfunction may contribute to various brain disorders. We end by considering a general model proposing that adult neurogenesis is not a cell-replacement mechanism, but instead maintains a plastic hippocampal neuronal circuit via the continuous addition of immature, new neurons with unique properties and structural plasticity of mature neurons induced by new-neuron integration. Expected final online publication date for the Annual Review of Neuroscience Volume 37 is July 08, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Neuroscience 07/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the prevalent view of emotion and decision making is derived from the notion that there are dual systems of emotion and reason, a modulatory relationship more accurately reflects the current research in affective neuroscience and neuroeconomics. Studies show two potential mechanisms for affect's modulation of the computation of subjective value and decisions. Incidental affective states may carry over to the assessment of subjective value and the decision, and emotional reactions to the choice may be incorporated into the value calculation. In addition, this modulatory relationship is reciprocal: Changing emotion can change choices. This research suggests that the neural mechanisms mediating the relation between affect and choice vary depending on which affective component is engaged and which decision variables are assessed. We suggest that a detailed and nuanced understanding of emotion and decision making requires characterizing the multiple modulatory neural circuits underlying the different means by which emotion and affect can influence choices. Expected final online publication date for the Annual Review of Neuroscience Volume 37 is July 08, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Neuroscience 07/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Howis sensory information represented in the brain?Along-standing debate in neural coding is whether and how timing of spikes conveys information to downstream neurons. Although we know that neurons in the olfactory bulb (OB) exhibit rich temporal dynamics, the functional relevance of temporal coding remains hotly debated. Recent recording experiments in awake behaving animals have elucidated highly organized temporal structures of activity in the OB. In addition, the analysis of neural circuits in the piriform cortex (PC) demonstrated the importance of not only OB afferent inputs but also intrinsicPCneural circuits in shaping odor responses. Furthermore, new experiments involving stimulation of the OB with specific temporal patterns allowed for testing the relevance of temporal codes. Together, these studies suggest that the relative timing of neuronal activity in the OB conveys odor information and that neural circuits in the PC possess various mechanisms to decode temporal patterns of OB input. Expected final online publication date for the Annual Review of Neuroscience Volume 37 is July 08, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Neuroscience 07/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing. Expected final online publication date for the Annual Review of Neuroscience Volume 37 is July 08, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Neuroscience 07/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of distinct anatomical circuits to generate multiple behavioral patterns is widespread among vertebrate and invertebrate species. These multifunctional neuronal circuits are the result of multistable neural dynamics and modular organization. The evidence suggests multifunctional circuits can be classified by distinct architectures, yet the activity patterns of individual neurons involved in more than one behavior can vary dramatically. Several mechanisms, including sensory input, the parallel activity of projection neurons, neuromodulation, and biomechanics, are responsible for the switching between patterns. Recent advances in both analytical and experimental tools have aided the study of these complex circuits.
    Annual Review of Neuroscience 08/2008; 31:271-94.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sensory experience and the resulting synaptic activity within the brain are critical for the proper development of neural circuits. Experience-driven synaptic activity causes membrane depolarization and calcium influx into select neurons within a neural circuit, which in turn trigger a wide variety of cellular changes that alter the synaptic connectivity within the neural circuit. One way in which calcium influx leads to the remodeling of synapses made by neurons is through the activation of new gene transcription. Recent studies have identified many of the signaling pathways that link neuronal activity to transcription, revealing both the transcription factors that mediate this process and the neuronal activity-regulated genes. These studies indicate that neuronal activity regulates a complex program of gene expression involved in many aspects of neuronal development, including dendritic branching, synapse maturation, and synapse elimination. Genetic mutations in several key regulators of activity-dependent transcription give rise to neurological disorders in humans, suggesting that future studies of this gene expression program will likely provide insight into the mechanisms by which the disruption of proper synapse development can give rise to a variety of neurological disorders.
    Annual Review of Neuroscience 08/2008; 31:563-90.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than three decades of research have demonstrated a role for hippocampal place cells in representation of the spatial environment in the brain. New studies have shown that place cells are part of a broader circuit for dynamic representation of self-location. A key component of this network is the entorhinal grid cells, which, by virtue of their tessellating firing fields, may provide the elements of a path integration-based neural map. Here we review how place cells and grid cells may form the basis for quantitative spatiotemporal representation of places, routes, and associated experiences during behavior and in memory. Because these cell types have some of the most conspicuous behavioral correlates among neurons in nonsensory cortical systems, and because their spatial firing structure reflects computations internally in the system, studies of entorhinal-hippocampal representations may offer considerable insight into general principles of cortical network dynamics.
    Annual Review of Neuroscience 08/2008; 31:69-89.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Wnt family of secreted proteins plays a crucial role in nervous system wiring. Wnts regulate neuronal positioning, polarization, axon and dendrite development, and synaptogenesis. These diverse roles of Wnt proteins are due not only to the large numbers of Wnt ligands and receptors but also to their ability to signal through distinct signaling pathways in different cell types and developmental contexts. Studies on Wnts have shed new light on novel molecular mechanisms that control the development of complex neuronal connections. This review discusses recent advances on how Wnt signaling influences different aspects of neuronal circuit assembly through changes in gene expression and/or cytoskeletal modulation.
    Annual Review of Neuroscience 08/2008; 31:339-58.