Brazilian Journal of Chemical Engineering Impact Factor & Information

Publisher: Associação Brasileira de Engenharia Química

Journal description

Covers current research relating to all aspects of chemical engineering.

Current impact factor: 1.04

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.043
2013 Impact Factor 0.912
2012 Impact Factor 0.894
2011 Impact Factor 0.637
2010 Impact Factor 0.811
2009 Impact Factor 0.571
2008 Impact Factor 0.475
2007 Impact Factor 0.448
2006 Impact Factor 0.377
2005 Impact Factor 0.385
2004 Impact Factor 0.212
2003 Impact Factor 0.355
2002 Impact Factor 0.16
2001 Impact Factor 0.184

Impact factor over time

Impact factor

Additional details

5-year impact 1.23
Cited half-life 6.40
Immediacy index 0.09
Eigenfactor 0.00
Article influence 0.25
Website Brazilian Journal of Chemical Engineering website
ISSN 0104-6632
OCLC 46982461
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recovery of spores and crystals from the fermentation broth of Bacillus thuringiensis (Bt) was studied using the membrane separation technology. Four types of polymeric membranes, with different characteristics, in the range of microfiltration (MF) and ultrafiltration (UF) were used for evaluating their permeate flux and spore/crystal recovery capacity. Results indicated that both MF and UF membranes are effective for spore—crystal recovery. The hydrophobic MF membrane made of polyvinylidene fluoride (PVDF) achieved a better performance compared to the one made with hydrophilic cellulose acetate (CA). Both had a 0.22 µm pore size, under the condition of an upper range of feed pressure. Also, with the increase of the feed flow rate, a higher flux was achieved for the PVDF membrane. A UF membrane made of polyethersulfone (PES) polymer was also used effectively for spore/crystal recovery from the broth; however, under a higher operating pressure. In the entire experiment, a 99.9% rejection factor was measured by the applied membranes for the spore/crystal in the fermentation broth.
    Brazilian Journal of Chemical Engineering 09/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, copolymeric and terpolymeric hydrogel-silver nanocomposites based on poly(acrylamideco-itaconic acid), poly(acrylic acid-co-itaconic acid) and poly(acrylic acid-co-acrylamide-co-itaconic acid) were synthesized by free-radical polymerization. These nanocomposites were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), UV-Visible Spectrophotometry (UV-Vis) and X-Ray Diffraction (XRD) analysis, as well as their swelling behaviors. In addition, antibacterial properties of these hydrogel-silver nanocomposites were investigated against Pseudomonas aeruginosa. Acrylic-based hydrogel-silver nanocomposites demonstrated antibacterial activity against Gram-negative bacteria. These hydrogel-silver nanocomposites can be used as antibacterial material in the medical field.
    Brazilian Journal of Chemical Engineering 07/2015; 32(2):509-518. DOI:10.1590/0104-6632.20150322s00003066
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pultrusion is one of several manufacturing processes for reinforced polymer composites. In this process fibers are continuously pulled through a resin bath and, after impregnation, the fiber-resin assembly is cured in a heated forming die. In order to obtain a polymeric composite with good properties (high and uniform degree of cure) and a process with a minimum of wasted energy, an optimization procedure is necessary to calculate the optimal temperature profile. The present work suggests a new strategy to minimize the energy rate taking into account the final quality of the product. For this purpose the particle swarm optimization (PSO) algorithm and the computer code DASSL were used to solve the differential algebraic equation that represents the mathematical model. The results of the optimization procedure were compared with results reported in the literature and showed that this strategy may be a good alternative to find the best operational point and to test other heat policies in order to improve the material quality and minimize the energy cost. In addition, the robustness and fast convergence of the algorithm encourage industrial implementation for the inference of the degree of cure and optimization.
    Brazilian Journal of Chemical Engineering 07/2015; 32(2):543. DOI:10.1590/0104-6632.20150322s00003181
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microalgae are considered as promising feedstocks for the third generation of biofuels. They are autotrophic organisms with high growth rate and can stock an enormous quantity of lipids (about 20 – 40 % of their dried cellular weight). This work was aimed at studying the cultivation of Scenedesmus obliquus in a two stage system composed by a photobioreactor and a settler to concentrate and recycle partially the biomass as a way to enhance the microalgae cellular productivity. It was attempted to specify by simulation and experimental data a relationship among recycling rate, kinetic parameters of microalgal growth and photobioreactor operating conditions. Scenedesmus obliquus cells were cultivated in a lab-scale flat-plate reactor, homogenized by aeration, and running in continuous flow with a residence time of 1.66 day. Experimental data for the microalgal growth were used in a semi-empirical simulation model. The best results were obtained for F_w = 0.2F_I, when R = 1 and kd = 0 and 0.05 day-1, with the biomass productivity in the reactor varying between 8 g L -1 and 14 g L-1, respectively. The mathematical model fitted to the microalgal growth experimental data was appropriate for predicting the efficiency of the reactor in producing Scenedesmus obliquus cells, establishing a relation between cellular productivity and minimum recycling rate that must be used in the system.
    Brazilian Journal of Chemical Engineering 06/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhanced heat transfer in tubes under laminar flow conditions can be found in coils or corrugated tubes or in the presence of high wall relative roughness, curves, pipe fittings or mechanical vibration. Modeling these cases can be complex because of the induced secondary flow. A modification of the Graetz problem for non-Newtonian power-law flow is proposed to take into account the augmented heat transfer by the introduction of an effective radial thermal diffusivity. The induced mixing was modeled as an increased radial heat transfer in a straight tube. Three experiments using a coiled tube and a tubular heat exchanger with high relative wall roughness are presented in order to show how this parameter can be obtained. Results were successfully correlated with Reynolds number. This approach can be useful for modeling laminar flow reactors (LFR) and tubular heat exchangers available in the chemical and food industries.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):445-454. DOI:10.1590/0104-6632.20150322s00003318
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to concentrate glycosyl hydrolases produced by Trichoderma harzianum P49P11 by ethanol precipitation. The variables tested besides ethanol concentration were temperature and pH. The precipitation with 90% (v/v) ethanol at pH 5.0 recovered more than 98% of the xylanase activity, regard less of the temperature (5.0, 15.0, or 25.0 °C). The maximum recovery of cellulase activity as FPase was 77% by precipitation carried out at this same pH and ethanol concentration but at 5.0 °C. Therefore, ethanol precipitation can be considered to be an efficient technique for xylanase concentration and, to a certain extent, also for the cellulase complex.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):325-333. DOI:10.1590/0104-6632.20150322s00003268
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wastewater treatment by deactivated and activated sludge was investigated to evaluate the removal of estrogens [estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2)] via adsorption and degradation. Different treatment conditions were used, including three mixed liquor volatile suspended solid (MLVSS) concentrations, three methanol concentrations (carbon source) and three types of aqueous media (water, synthetic solution, and supernatant). The E2 was degraded the fastest by the bacterial community. In all cases the removal rate increased when the initial MLVSS and methanol concentrations increased and when the macro- and micronutrients were present in the solution. In the experiments with deactivated sludge, the synthetic compound EE2 was more easily removed via sorption. The bacterial communities of the activated sludge were studied, which indicated a similarity of more than 75% between the different samples. A similarity of only 50% was found between the activated and deactivated sludges.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):421-432. DOI:10.1590/0104-6632.20150322s00003667
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, three quality or performance indices (Luyben's capacity factor, total annual costs, and annual profit) were applied for the design of a batch distillation column working at variable reflux. This work used the Fenske-Underwood-Gilliland short-cut method to solve a problem of four components (benzene, toluene, ethyl-benzene, and ortho-xylene) that needed to be separated and purified to a mole fraction of 0.97 or better. The performance of the system was evaluated using distillation columns with 10, 20, 30, 40 and 50 theoretical stages with a boil-up vapor flow set at 100 kmol/h. It was found that the annual profit was the best quality index, while the best case for variable reflux was the column with 50 stages. It was confirmed that the best case always required a reflux ratio close to the minimum.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):595-608. DOI:10.1590/0104-6632.20150322s00003157
  • [Show abstract] [Hide abstract]
    ABSTRACT: An AnSBBR (anaerobic sequencing batch reactor containing biomass immobilized on an inert support) with liquid phase recirculation, containing a 3.5 L working volume, treated 1.5 L of cheese whey wastewater in 3 and 4 h cycles at 30 ºC to produce biohydrogen. From startup the bioreactor presented process instability. To overcome this problem the following measures were taken, however without success: adaptation of the biomass with uncontaminated easily degradable substrates, pH control at very low levels, and a different form of inoculation (natural fermentation of the feed medium). The problem was solved by cooling the feed medium to 4 ºC to prevent acidification in the storage container, by eliminating nutrient supplementation to prevent possible formation of H2S by sulfate-reducing bacteria and by periodic washing of the support material to improve the food/microorganism ratio. Hence, stable hydrogen production could be achieved with minimal presence of methane (36% H2; 62% CO2; 2% CH4) and the AnSBBR fed with cheese whey (influent concentration of 4070 mgCOD.L-1 and 3240 mgCarbohydrate.L-1 and applied volumetric organic loading of 14.6 gCOD.L-1.d-1) presented improved productivity and yield indicators compared to pure lactose and other reactor configurations, reaching values of 420 NmLH2.L-1.d-1 and 0.60 molH2.molCarbohydrate-1 in the steady-state phase (conversions of carbohydrates and COD were 98% and 30%, respectively).
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):397-408. DOI:10.1590/0104-6632.20150322s00003342
  • [Show abstract] [Hide abstract]
    ABSTRACT: Water-in-oil (W/O) emulsions are complex mixtures generally found in crude oil production in reservoirs and processing equipment. Sedimentation studies of water-oil emulsions enable the analysis of the fluid dynamic behavior concerning separation of this system composed of two immiscible liquids. Gravitational settling was evaluated in this article for a model emulsion system consisting of water and a Brazilian crude oil diluted in a clear mineral oil as organic phase. The effects of water content and temperature were considered in the study of sedimentation velocity of water-oil emulsions. Water contents between 10% and 50 % and temperatures of 25, 40 and 60 ºC were evaluated, and a Richardson-Zaki type correlation was obtained to calculate settling velocities as a function of the process variables investigated. Water contents and average droplet sizes were monitored at different levels in the settling equipment, thus enabling identification of the effect of these variables on the phenomena of sedimentation and coalescence of the emulsions studied. The results showed that the emulsion stability during sedimentation was governed by the emulsion water content, which yielded high settling velocities at low water contents, even when very small droplets were present. A quantitative analysis of the combined effects of drop size and droplet concentration supports the conclusion that a stronger effect is produced by the higher concentration of particles, compared with the relatively smaller effect of increasing the size of the droplets.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):455-464. DOI:10.1590/0104-6632.20150322s00003323
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper investigates the simultaneous removal of arsenic [As(V) or As(III)] and manganese [Mn(II)] from natural waters of low and high turbidity by clarification (with polyaluminum chloride and aluminum sulfate as primary coagulants) associated or not with chlorine pre-oxidation. The results showed that the clarification process exhibited low Mn(II) removal, that varied from 6% to 18% and from 19% to 27% for natural waters of low and high turbidity, respectively. The use of chlorine as pre-oxidant increased Mn(II) removal up to 77% and was associated with the formation of birnessite. Regarding As(V) removal by clarification, particularly for high turbidity water, a concentration lower than that established by the National Drinking Water Quality Standards (10 μg.L-1) was achieved in almost all tests. Oxidation preceding the clarification led to AsIII removal efficiencies from 80% to 90% for both coagulants and types of water.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):409-419. DOI:10.1590/0104-6632.20150322s00003564
  • Brazilian Journal of Chemical Engineering 06/2015; 32(2):357-365. DOI:10.1590/0104-6632.20150322s00003675
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, continuous fixed bed column runs were carried out in an attempt to evaluate the feasibility of using bone char for the removal of manganese from acid mine drainage (AMD). Tests using a laboratory solution of pure manganese at typical concentration levels were also performed for comparison purposes. The following operating variables were evaluated: column height, flow rate, and initial pH. Significant variations in resistance to the mass transfer of manganese into the bone char were identified using the Thomas model. A significant effect of the bed height could only be observed in tests using the laboratory solution. No significant change in the breakthrough volume could be observed with different flow rates. By increasing the initial pH from 2.96 to 5.50, the breakthrough volume was also increased. The maximum manganese loading capacity in continuous tests using bone char for AMD effluents was 6.03 mg g1, as compared to 26.74 mg g1 when using the laboratory solution. The present study also performed desorption tests, using solutions of HCl, H2SO4, and water, aimed at the reuse of the adsorbent; however, no promising results were obtained due to low desorption levels associated with a relatively high mass loss. Despite the desorption results, the removal of manganese from AMD effluents using bone char as an adsorbent is technically feasible and attends to environmental legislation. It is interesting to note that the use of bone char for manganese removal may avoid the need for pH corrections of effluents after treatment. Moreover, bone char can also serve to remove fluoride ions and other metals, thus representing an interesting alternative material for the treatment of AMD effluents.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):577-584. DOI:10.1590/0104-6632.20150322s00002681
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the operation of bioreactors, the fluid movement promotes mixing between sludge and substrate. The dynamics of this system are complex, and the interaction between the phases is difficult to evaluate accurately. In this work, Computational Fluid Dynamics is applied to simulate a pilot-scale anaerobic sequencing batch reactor, using a three-dimensional, transient and multiphase modeling. Several correlations were applied to estimate the interfacial forces. Results indicate that the use of different coefficients for the drag and lift forces strongly affects the predicted turbulent kinetic energy, and thus the mixture estimation in the bioreactor. The use of the drag as the only interfacial force provided an average turbulent kinetic energy close to the value found using a more complete model. However, the absence of lift and virtual mass forces had a significant impact on the resulting turbulence distribution.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):531-542. DOI:10.1590/0104-6632.20150322s00003300
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effect of organic loading rate (OLR) and sulfate loading rate (SLR) on landfill leachate treatment by a lab-scale anaerobic baffled reactor (ABR). Landfill leachate contained a concentration of organic matter between 3966 and 5090 mg COD.L-1 and no detectable amounts of sulfate. Reactors were started-up by feeding them with iron-sulfate at a SLR of 0.05 g (4 weeks). Factorial design and response surface techniques were used to evaluate and optimize the effects of these operating variables on COD removal. ABRs were operated at OLRs ranging from 0.30 up to 6.84 g by changes in influent volumetric flow. SO42- was added to the influent at a SRL from 0.06 to 0.13 g The highest value of COD removal (66%) was reached at an OLR of 3.58 g and SLR of 0.09 g with a COD/SO4 -2 ratio of 40. Under these conditions sulfate is mainly used for molecular hydrogen consumption while organic matter is preferentially degraded via methanogesis.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):385-395. DOI:10.1590/0104-6632.20150322s00003228
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this communication we have investigated the phenomenon of Newtonian heating under the application of a uniform magnetic field when thermal-diffusion "Soret" and diffusion-thermo "Dufour" effects appear in the energy and concentration equations in a flow of a Jeffery fluid. The flow is induced by the stretching of a disk in the radial direction. The solutions of the nonlinear equations governing the velocity, temperature and concentration profiles are solved analytically "using HAM" and graphical results for the resulting parameters are displayed and discussed. Numerical values of local Nusselt and Sherwood numbers for different values of physical parameters are computed and shown. It is shown that the magnetic field retards the flow, whereas Newtonian heating acts as a boosting agent which enhances the flow. It is also noted that the combined Soret and Dufour effects on the temperature and concentration profiles are opposite.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):555-561. DOI:10.1590/0104-6632.20150322s00001918
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single-cycle firing is currently the most widespread method used for the production of ceramic tile. The productivity is directly related to the performance of the constituent materials of the ceramic piece during thermal cycling. Numerical tools which allow the prediction of the material behavior may be of great help in the optimization of this stage. This study addressed the mathematical modeling of the temperature profile within a ceramic tile, together with the sintering kinetics, to simulate the effect of the thermal cycle on the final size. On the laboratory scale, 80 mm x 20 mm specimens with thicknesses of 2.3 mm and 7.8 mm were prepared in order to determine the kinetic constants and validate the model. The application was carried out on an industrial scale, with 450 mm x 450 mm pieces that were 8.0 mm thick. These results show that the model was capable of predicting the experimental results satisfactorily.
    Brazilian Journal of Chemical Engineering 06/2015; 32(2):433-443. DOI:10.1590/0104-6632.20150322s00002876