Geophysical Research Letters (GEOPHYS RES LETT )

Publisher: American Geophysical Union, American Geophysical Union

Description

Geophysical Research Letters publishes short, concise research letters that present scientific advances that are likely to have immediate influence on the research of other investigators. GRL letters can focus on a specific discipline or apply broadly to the geophysical science community.

  • Impact factor
    3.98
    Show impact factor history
     
    Impact factor
  • 5-year impact
    4.07
  • Cited half-life
    7.10
  • Immediacy index
    0.68
  • Eigenfactor
    0.23
  • Article influence
    2.13
  • Website
    Geophysical Research Letters website
  • Other titles
    Geophysical research letters
  • ISSN
    0094-8276
  • OCLC
    1795290
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

American Geophysical Union

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Preprints and Authors final version on Authors own or departmental website
    • Set statements to accompany pre-print, submitted, accepted and published articles
    • Publisher copyright and source must be acknowledged
    • Publisher's version/PDF must be used in Institutional Repository 6 months after publication.
  • Classification
    ​ green

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1] For Fe contained in long-range transported aeolian dust to act as a micronutrient for oceanic phytoplankton it must be first dissolved or mobilized. We propose that Fe-mobilization can occur in mineral dust from East Asia by the incorporation of SO 2 into the advecting dust plumes and subsequent acidification of the dust through heterogeneous SO 2 oxidation. To test this hypothesis, we consider a dust plume that originated from the gobi-deserts and advected over the Pacific Ocean. Data collected over the Yellow Sea confirm that this plume contained high concentrations of dust and SO 2 . Significant gaseous HNO 3 concentrations indicate that the dust particles were acidified (i.e., pH < 2). At these pH's, 1– 2% of the Fe contained in a deliquescent mineral dust particle would be mobilized within 3 –5 days. These results suggest a possible link between the rate of C-fixation in so-called High-Nitrate-Low-Chlorophyll regions of the Pacific Ocean and SO 2 emissions from East Asia.
    Geophysical Research Letters 01/2085; 30.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1] Precipitation data from the new ERA40 reanalyses and from a 200-year simulation confirm a robust main mode of precipitation variability in west Antarctica. An intermittently strong ENSO signature is found in this mode. However, high correlation with ENSO indices appears infrequent. Thus, the high correlation found in ERA40, and previously in other chronologically realistic data, in the late 1980s and the 1990s may not be expected to last. Unlike previously suggested by others, the sign of the correlation between ENSO indices and west Antarctic precipitation, when significant, does not appear to change in time: Precipitation variability at the ENSO pace in the Bellingshausen-Weddell (Ross-Amunsden) region is consistently in phase (phase opposition, respectively) with the Southern Oscillation Index. This is consistent with a tropospheric wave train connecting the tropical Pacific and west Antarctic regions, which modulates in phase opposition the advection of air and moisture in the 2 regions.
    Geophysical Research Letters 01/2081; 30.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1] The high-resolution wind vectors observed by the space-based scatterometer QuikSCAT, from 1999 to 2002, show that the double intertropical convergence zones (ITCZ) exist in the Atlantic and the eastern Pacific oceans for most of the annual cycle, and are far more extensive than previously recognized. For most of the time, the southern ITCZ is weaker than the northern one. The stronger ITCZ occurs when the northerly trade winds meet the southerly trade winds over warm water, resulting in deep convection. The weaker ITCZ over cooler water is caused by the deceleration of the surface winds as they approach the cold upwelling water near the equator. Decreases in vertical mixing and increases in vertical wind shear in the atmospheric boundary layer are suggested to be the causes of the deceleration of the trade winds as they move from warmer to colder water.
    Geophysical Research Letters 01/2072; 29.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1] The environmental damage caused by atmospheric pollutants is proportional to the duration of their effects. The global impacts of greenhouse gases (as measured by global warming potential) and ozone depleting substances (as measured by ozone depletion potential) have traditionally been calculated using the atmospheric lifetime of the source gas as a quantitative measure of the impact's duration, assuming that the gas quickly reaches a steady-state pattern which decays exponentially according to the lifetime. This assumed behavior obviously does not match the true rise and fall of impacts, particularly secondary ones like ozone depletion, that can be seen in numerical integrations or chemical mode decomposition. Here, the modes decomposition is used to prove that: (a) the steady-state pattern of impacts caused by specified emissions, multiplied by (b) the steady-state lifetime of the source gas for that emission pattern, is exactly equal to (c) the integral of all impacts -independent of the number and atmospheric residence times of secondary impacts.
    Geophysical Research Letters 01/2063; 29.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1] In the interior western United States, increased demand for water coupled with the uncertain nature of anthropogenic and natural hydroclimatic variations add challenges to the task of assessing the adequacy of the existing regional water resources systems. Current availability of relatively short instrumental streamflow records further limits the diagnosis of multidecadal and longer time variations. Here we develop a long-term perspective of streamflow variations using a 285-year long tree-ring reconstruction at Middle Boulder Creek, Colorado. Analysis of the reconstructed streamflow provides useful insights for assessing vulnerability: (a) a wider range of hydrologic variations on multidecadal time scales, not seen in the instrumental record, (b) wet/dry regimes show disparate fluctuations across various flow thresholds, and (c) temporal changes in the flow probabilities have varied ''flavors'' corresponding to wet and dry regimes and their spatial extent. Based on these results, we discuss implications for the climate-related vulnerability of regional water resources.
    Geophysical Research Letters 01/2036; 29.
  • H. Gao, M. Hrachowitz, S.J. Schymanski, F. Fenicia, N. Sriwongsitanon, H.H.G. Savenije
    [Show abstract] [Hide abstract]
    ABSTRACT: The root zone moisture storage capacity (SR) of terrestrial ecosystems is a buffer providing vegetation continuous access to water and a critical factor controlling land-atmospheric moisture exchange, hydrological response and biogeochemical processes. However, it is impossible to observe directly at catchment scale. Here, using data from 300 diverse catchments, it was tested that, treating the root zone as a reservoir, the mass curve technique (MCT), an engineering method for reservoir design, can be used to estimate catchment-scale SR from effective rainfall and plant transpiration. Supporting the initial hypothesis, it was found that MCT-derived SR coincided with model-derived estimates. These estimates of parameter SR can be used to constrain hydrological, climate and land surface models. Further, the study provides evidence that ecosystems dynamically design their root systems to bridge droughts with return periods of 10–40 years, controlled by climate and linked to aridity index, inter-storm duration, seasonality and runoff ratio.
    Geophysical Research Letters 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric fronts are important for the day-to-day variability of weather in the midlatitudes. It is therefore vital to know how their distribution and frequency will change in a projected warmer climate. Here we apply an objective front identification method, based on a thermal front parameter, to 6-hourly data from models participating in CMIP5. The historical simulations are evaluated against ERA-Interim and found to produce a similar frequency of fronts and with similar front strength. The models show some biases in the location of the front frequency maxima. Future changes are estimated using the high emissions scenario simulations (RCP8.5). Projections show an overall decrease in front frequency in the Northern Hemisphere, with a poleward shift of the maxima of front frequency and a strong decrease at high latitudes where the temperature gradient is decreased. The Southern Hemisphere shows a poleward shift of the frequency maximum, consistent with previous storm-track studies.
    Geophysical Research Letters 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterogeneity of porous media induces a number of fluid-flow mechanisms causing attenuation of seismic waves. Attenuation induced by squirt-type mechanisms has previously been analyzed for aspect ratios smaller or equal to 10^3. Using a hybrid-dimensional modeling approach, particularly apt for large-aspect-ratio conduits, we numerically simulated deformation-induced fluid flow along two intersecting fractures to investigate the physics of attenuation related to the interaction of fracture-induced fluid flow and to leak-off. Attenuation related to fracture flow increases in magnitude with increasing geometrical aspect ratio of the fracture. The inherent time scales of both flow mechanisms do not influence each other, but the faster process is associated with stronger attenuation than the slower process. Models relying on simple diffusion equations have rather limited potential for approximation of pressure transients.
    Geophysical Research Letters 10/2014;