Science of The Total Environment Journal Impact Factor & Information

Publisher: Elsevier

Journal description

The journal is an international medium for the publication of research into those changes in the environment caused by man's activities. Specifically, it is concerned with the changes in the natural level and distribution of chemical elements and compounds which may affect the well-being of the living world, and ultimately harm man himself. Emphasis is given to applied environmental chemistry. The subjects covered include: (a) application of techniques and methods of chemistry and biochemistry to environmental problems (b) pollution of the air, water, soil and various aspects of human nutrition (c) environmental medicine, when the effect of abnormalities in the level and distribution of chemical elements and compounds are given prominence (d) the use of interdisciplinary methods in studies of the environment (e) environmental planning and policy

Current impact factor: 4.10

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 4.099
2013 Impact Factor 3.163
2012 Impact Factor 3.258
2011 Impact Factor 3.286
2010 Impact Factor 3.19
2009 Impact Factor 2.905
2008 Impact Factor 2.579
2007 Impact Factor 2.182
2006 Impact Factor 2.359
2005 Impact Factor 2.224
2004 Impact Factor 1.925
2003 Impact Factor 1.455
2002 Impact Factor 1.537
2001 Impact Factor 1.396
2000 Impact Factor 1.252
1999 Impact Factor 1.126
1998 Impact Factor 1.249
1997 Impact Factor 0.947

Impact factor over time

Impact factor

Additional details

5-year impact 4.41
Cited half-life 6.30
Immediacy index 0.92
Eigenfactor 0.07
Article influence 1.13
Website Science of the Total Environment, The website
Other titles Science of the total environment
ISSN 0048-9697
OCLC 1642328
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • Science of The Total Environment 02/2016; 543:581-590. DOI:10.1016/j.scitotenv.2015.10.159
  • [Show abstract] [Hide abstract]
    ABSTRACT: Particulate matter (PM) contributes to an increased risk of respiratory and cardiovascular illnesses, cancer, and preterm birth complications. This project assessed PM exposure in Eastern Indonesia's largest city, where air quality has not been comprehensively monitored. We examined the efficacy of wearing masks as an individual intervention effort to reduce in-transit PM exposures. Handheld particulate counters were used to investigate ambient air quality for spatial analysis, as well as the differences in exposure to PM2.5 and PM10 (μg/m(3)) by different transportation methods [e.g. motorcycle (n=97), pete-pete (n=53), and car (n=55); note: n=1 means 1m(3) of air sample]. Mask efficacy to reduce PM exposure was evaluated [e.g. surgical masks (n=39), bandanas (n=52), and motorcycle masks (n=39)]. A Monte Carlo simulation was used to provide a range of uncertainty in exposure assessment. Overall PM10 levels (91±124μg/m(3)) were elevated compared to the World Health Organization (WHO)'s 24-hour air quality guideline (50μg/m(3)). While average PM2.5 levels (9±14μg/m(3)) were below the WHO's guideline (25μg/m(3)), measurements up to 139μg/m(3) were observed. Compared to cars, average motorcycle and pete-pete PM exposures were four and three times higher for PM2.5, and 13 and 10 times higher for PM10, respectively. Only surgical masks were consistent in lowering PM2.5 and PM10 (p<0.01). Young children (≤5) were the most vulnerable age group, and could not reach the safe dosage even when wearing surgical masks. Individual interventions can effectively reduce individual PM exposures; however, policy interventions will be needed to improve the overall air quality and create safer transportation.
    Science of The Total Environment 02/2016; 543(Pt A):416-424. DOI:10.1016/j.scitotenv.2015.10.163
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transport of perfluorooctanoic acid (PFOA) was simulated in the beginning of River Kokemäenjoki in Finland using one-dimensional SOBEK river model. River Kokemäenjoki is used as a raw water source for an artificial groundwater recharge plant, and the raw water intake plant is located near the downstream end of the model application area. Measured surface water and wastewater concentrations were used to determine the PFOA input to the river and to evaluate the simulation results. The maximum computed PFOA concentrations in the river at the location of the raw water intake plant during the simulation period Dec. 1, 2011-Feb. 16, 2014 were 0.92 ng/l and 3.12 ng/l for two alternative modeling scenarios. These concentration values are 2.3% and 7.8%, respectively, of the 40 ng/l guideline threshold value for drinking water. The current annual median and maximum PFOA loads to the river were calculated to be 3.9 kg/year and 10 kg/year respectively. According to the simulation results, the PFOA load would need to rise to a level of 57 kg/year for the 40 ng/l guideline value to be exceeded in riverwater at the rawwater intake plant during a dry season. It is thus unlikely that PFOA concentration in raw water would reach the guideline valuewithout the appearance of newPFOA sources. The communal wastewater treatment plants in the study area caused on average 11% of the total PFOA load. This raises a concern about the origin of the remaining 89% of the PFOA load and the related risk factors.
    Science of The Total Environment 01/2016; 541(15):74-82. DOI:10.1016/j.scitotenv.2015.09.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions.
    Science of The Total Environment 01/2016; DOI:10.1016/j.scitotenv.2015.10.095
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluates AERMOD and CALPUFF dispersion calculations of particulate matter emissions from stone quarries in two mountainous regions against TSP and PM10 measurements, using both observational and WRF-modeled meteorological data. Due to different model parameterization, AERMOD dispersion predictions were in better agreement with the measured concentrations than those obtained by CALPUFF. As expected, the smaller the distance between the meteorological station, the source (quarry) and the receptors, the better the predictions of both AERMOD and CALPUFF. In contrast, using in-situ wind field obtained by runs of the WRF meteorological model for the complex terrain study area provided, in general, less accurate dispersion estimates than when using (even remote) meteorological observations. In particular, using the three-dimensional WRF-modeled wind field within CALPUFF did not provide any advantage over using the two-dimensional wind field, which is the common procedure of AERMOD and CALPUFF. Dry deposition was more significant for ambient concentration estimation in AERMOD than in CALPUFF.
    Science of The Total Environment 01/2016; 542(Part A):946–954. DOI:10.1016/j.scitotenv.2015.10.133
  • [Show abstract] [Hide abstract]
    ABSTRACT: 14C-sulfamethoxazole biotransformation, sorption and mineralization was studied with heterotrophic and autotrophic biomass under aerobic and anoxic conditions, as well as with anaerobic biomass. The 14C-radiolabelled residues distribution in the solid, liquid and gas phases was closely monitored along a total incubation time of 190 h. Biotransformation was the main removal mechanism, mineralization and sorption remaining below 5% in all the cases, although the presence of a carbon source exerted a positive effect on the mineralization rate by the aerobic heterotrophic bacteria. In fact, an influence of the type of primary substrate and the redox potential was observed in all cases on the biotransformation and mineralization rates, since an enhancement of the removal rate was observed when an external carbon source was used as a primary substrate under aerobic conditions, while a negligible effect was observed under nitrifying conditions. In the liquid phases collected from all assays, up to three additional peaks corresponding to 14C-radiolabelled residues were detected. The highest concentration was observed under anaerobic conditions, where two radioactive metabolites were detected representing each around 15% of the total applied radioactivity after 180 h incubation. One of the metabolites detected under anoxic and anaerobic conditions, is probably resulting from ring cleavage of the isoxazole ring.
    Science of The Total Environment 01/2016; 542(A):706-715. DOI:10.1016/j.scitotenv.2015.10.140