Science of The Total Environment (SCI TOTAL ENVIRON)

Publisher: Elsevier

Journal description

The journal is an international medium for the publication of research into those changes in the environment caused by man's activities. Specifically, it is concerned with the changes in the natural level and distribution of chemical elements and compounds which may affect the well-being of the living world, and ultimately harm man himself. Emphasis is given to applied environmental chemistry. The subjects covered include: (a) application of techniques and methods of chemistry and biochemistry to environmental problems (b) pollution of the air, water, soil and various aspects of human nutrition (c) environmental medicine, when the effect of abnormalities in the level and distribution of chemical elements and compounds are given prominence (d) the use of interdisciplinary methods in studies of the environment (e) environmental planning and policy

Current impact factor: 3.16

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 3.163
2012 Impact Factor 3.258
2011 Impact Factor 3.286
2010 Impact Factor 3.19
2009 Impact Factor 2.905
2008 Impact Factor 2.579
2007 Impact Factor 2.182
2006 Impact Factor 2.359
2005 Impact Factor 2.224
2004 Impact Factor 1.925
2003 Impact Factor 1.455
2002 Impact Factor 1.537
2001 Impact Factor 1.396
2000 Impact Factor 1.252
1999 Impact Factor 1.126
1998 Impact Factor 1.249
1997 Impact Factor 0.947

Impact factor over time

Impact factor

Additional details

5-year impact 3.79
Cited half-life 6.50
Immediacy index 0.46
Eigenfactor 0.06
Article influence 1.08
Website Science of the Total Environment, The website
Other titles Science of the total environment
ISSN 0048-9697
OCLC 1642328
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The dynamic nature of nanoparticle (NP) agglomeration behavior is of paramount interest to many current studies in environmental nanoscience and nano(eco)toxicology because agglomeration affects the NP bioavailability and toxicity. The present study investigates the surface charge and agglomeration behavior of TiO2 NPs in four different ecotoxicological media (OECD algae, OECD L_variegatus, hardwater and plant media) and two different electrolytes KCl (200 mM) and CaCl2 (50 mM). TiO2 NPs were positively charged, and the zeta potential varied from +1.9 mV in hardwater (at pH 7.1) to +24.5 mV in CaCl2 electrolyte (at pH 7.4) in all media except algae media, where the zeta potential was - 6.7 mV (at pH 7.7). Despite the differences in the pH and the surface charge of TiO2 NPs in the different media, an immediate agglomeration of the NPs in all standard ecotoxicological media was observed with aggregate sizes in the micrometer scale, as the measured zeta potentials were insufficient to prevent TiO2 NP agglomeration. Furthermore, tThe isoelectric point (pHiep) of TiO2 NPs in the studied media varied in the range (6.8-7.6), which was attributed to preferential association of anions and cations to TiO2; that is the pHiep decreases with the increased concentration of Cl and increases with the increased concentrations of Na and Mg. Despite the complexity of the ecotoxicological media and the presence of a mixture of different monovalent and divalent electrolytes, the agglomeration kinetics in the media follows the DVLO theory where two distinct agglomeration rates (slow, reaction limited regime and fast, diffusion limited regime) were observable. The critical coagulation concentration (CCC) of TiO2 NPs in the ecotoxicological media varied from 17.6 to 54.0 % v media/v standard media in UHPW concentration, due to differences in media pH and TiO2 NP surface charge. In the ecotoxicological media (hardwater, L-variegatus and plant), where TiO2 NPs are positively charged, the CCC decrease with the increased divalent anions (act as counter ions) concentration in the media, again in good agreement with the DLVO theory.
    Science of The Total Environment 11/2015; DOI:10.1016/j.scitotenv.2014.11.057
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although relatively recent, human activities in Antarctica, such as growing tourism, fishery activities, and scientific operations, have affected some areas of this continent. These activities eventually release pollutants, such as petroleum and its derivatives and sewage, into this environment. Located on King George Island (25 de Mayo Island), Potter Cove (62°14′S, 58°39′W) is home to the Argentine Carlini research station. To evaluate the anthropogenic impacts surrounding Potter Cove, sediment samples were collected and analysed for sewage and fuel introduction via the determination of organic markers. The highest concentrations were found in the central portion of the fjords, where fine sediments are deposited and the accumulation of organic molecules is favoured. Aliphatic hydrocarbons were mainly derived from biogenic sources, evidenced by the predominance of odd short-chain n-alkanes. Anthropogenic impacts were evidenced primarily by the presence of PAHs, which were predominantly related to petrogenic sources, such as vessel and boat traffic. Sewage marker concentrations were much lower than those found in other Antarctic regions. These results indicate that oil hydrocarbons and sewage inputs to Potter Cove may be considered low or only slightly influential.
    Science of The Total Environment 09/2015; 502:408-416.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrosamines are considered to pose greater health risks than currently regulated DBPs and are subsequently listed as a priority pollutant by the EPA, with potential for future regulation. Denver Water, as part of the EPA's Unregulated Contaminant Monitoring Rule 2 (UCMR2) monitoring campaign, found detectable levels of N-nitrosodimethylamine (NDMA) at all sites of maximum residency within the distribution system. To better understand the occurrence of nitrosamines and nitrosamine precursors, Denver Water undertook a comprehensive year-long monitoring campaign. Samples were taken every two weeks to monitor for NDMA in the distribution system, and quarterly sampling events further examined 9 nitrosamines and nitrosamine precursors throughout the treatment and distribution systems. NDMA levels within the distribution system were typically low (>1.3 to 7.2ng/L) with a remote distribution site (frequently >200h of residency) experiencing the highest concentrations found. Eight other nitrosamines (N-nitrosomethylethylamine, N-nitrosodiethylamine, N-nitroso-di-n-propylamine, N-nitroso-di-n-butylamine, N-nitroso-di-phenylamine, N-nitrosopyrrolidine, N-nitrosopiperidine, N-nitrosomorpholine) were also monitored but none of these 8, or precursors of these 8 [as estimated with formation potential (FP) tests], were detected anywhere in raw, partially-treated or distribution samples. Throughout the year, there was evidence that seasonality may impact NDMA formation, such that lower temperatures (~5-10°C) produced greater NDMA than during warmer months. The year of sampling further provided evidence that water quality and weather events may impact NDMA precursor loads. Precursor loading estimates demonstrated that NDMA precursors increased during treatment (potentially from cationic polymer coagulant aids). The precursor analysis also provided evidence that precursors may have increased further within the distribution system itself. This comprehensive study of a large-scale drinking water system provides insight into the variability of NDMA occurrence in a chloraminated system, which may be impacted by seasonality, water quality changes and/or the varied origins of NDMA precursors within a given system. Copyright © 2015 Elsevier B.V. All rights reserved.
    Science of The Total Environment 07/2015; Accepted. DOI:10.1016/j.scitotenv.2015.03.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345t in the whole China according to the market research data, and after wastewater treatment a total emission of 245t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367ng/L in water, and 0.009-25.2ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.
    Science of The Total Environment 07/2015; 520. DOI:10.1016/j.scitotenv.2015.03.038
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to determine the differences in the behaviors of four F-specific RNA (F-RNA) coliphage genogroups (GI-GIV) during wastewater treatment. Raw sewage, aeration tank effluent, secondary-treated sewage, and return activated sludge were collected from a wastewater treatment plant in Japan at monthly intervals between March and December 2011 (n=10 each). F-specific coliphages were detected by plaque assay in all tested samples, with a concentration ranging from -0.10 to 3.66log10plaque-forming units/ml. Subsequently, eight plaques were isolated from each sample, followed by genogroup-specific reverse-transcription quantitative PCR (qPCR) for F-RNA coliphages and qPCR for F-specific DNA (F-DNA) coliphages. GI F-RNA coliphages were the most abundant in the secondary-treated sewage samples (73% of the plaque isolates), while GII F-RNA coliphages were the most abundant in the other three sample types (41-81%, depending on sample type). Based on the results of the quantification and genotyping, the annual mean concentrations of each F-specific coliphage type were calculated, and their reduction ratios during wastewater treatment were compared with those of indicator bacteria (total coliforms and Escherichia coli) and enteric viruses (human adenoviruses and GI and GII noroviruses). The mean reduction ratio of GI F-RNA coliphages was the lowest (0.93 log10), followed by those of the indicator bacteria and enteric viruses (1.59-2.43 log10), GII-GIV F-RNA coliphages (>2.60-3.21 log10), and F-DNA coliphages (>3.41 log10). These results suggest that GI F-RNA coliphages may be used as an appropriate indicator of virus reduction during wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
    Science of The Total Environment 07/2015; 520:32-38. DOI:10.1016/j.scitotenv.2015.03.034
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aircraft and road traffic noise exposure increase the risk of cardiovascular disease (CVD). Noise annoyance is the most frequent response to environmental noise. Noise annoyance has been shown to modify the association of transport noise exposure on CVD and noise sensitivity moderates the annoyance response to noise. This study uses prospective data from phases 1, 3, 5, 7 and 9 in 3630 male and female civil servants from the UK Whitehall II Study to examine whether a single question on noise sensitivity measured by annoyance responses to noise in general predicts physical and mental ill-health and mortality. Non-fatal myocardial infarction and stroke morbidity over the follow-up were defined by MONICA criteria based on study ECGs, hospital records, hospital admission statistics or General Practitioner confirmation. Depressive symptoms were measured by the Center for Epidemiologic Studies Depression Scale (CES-D) and psychological distress by the General Health questionnaire (GHQ). There was no association between noise sensitivity and CVD morbidity or mortality except in people from lower employment grades where there was an association with angina. Noise sensitivity was a consistent predictor of depressive symptoms and psychological distress at phases 3, 5 and 7. High noise sensitivity scores at baseline predicted GHQ caseness at phase 3 adjusting for age, sex, employment grade, self-rated health and GHQ caseness at baseline (OR=1.56 95% CI 1.29-1.88). Noise sensitivity has been identified as a predictor of mental ill-health. More longitudinal research is needed including measures of noise exposure. Copyright © 2015. Published by Elsevier B.V.
    Science of The Total Environment 07/2015; 520. DOI:10.1016/j.scitotenv.2015.03.053
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photochemical behavior of etodolac was investigated under various irradiation conditions. Kinetic data were obtained after irradiation of 10(-4)M aqueous solutions by UVB, UVA and direct exposure to sunlight. The Xenon lamp irradiation was used in order to determine the photodegradation quantum yield under sun-simulated condition (ϕsun). The value was determined to be=0.10±0.01. In order to obtain photoproducts and for mechanistic purposes, experiments were carried out on more concentrated solutions by exposure to sunlight and to UVA and UVB lamps. The drug underwent photooxidative processes following an initial oxygen addition to the double bond of the five membered ring and was mainly converted into a spiro compound and a macrolactam. Ecotoxicity tests were performed on etodolac, its photostable spiro derivative and its sunlight irradiation mixture on two different aquatic trophic levels, plants (algae) and invertebrates (rotifers and crustaceans). Mutagenesis and genotoxicity were detected on bacterial strains. The results showed that only etodolac had long term effects on rotifers although at concentrations far from environmental detection values. A mutagenic and genotoxic potential was found for its derivative. Copyright © 2015 Elsevier B.V. All rights reserved.
    Science of The Total Environment 06/2015; 518–519:258–265. DOI:10.1016/j.scitotenv.2015.03.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Campania Region of Southern Italy has a complex environmental situation, due to geogenic and anthropogenic soil pollution. Some of the pollutants such as copper are mobilized in the organic matter. It has been shown that wetlands provide physical as well as biogeochemical barriers against pollutants. Therefore, the objective of this study was to introduce and test an innovative approach able to predict copper accumulation points at plot scales, using a combination of aerial photos, taken by drones, micro-rill network modelling and wetland prediction indices usually used at catchment scales. Data were collected from an area measuring 4500 m2 in Trentola Ducenta locality of Caserta Province of southern Italy. The photos processing with a fifth generation software for photogrammetry resulted in a high resolution Digital Elevation Model (DEM), used to study micro-rill processes. The DEM was also used to test the ability of Topographic Index (TI) and the Clima-Topographic Index (CTI) to predict copper sedimentation points at plot scale (0.1–10 ha) by comparing the map of the predicted and the actual copper distribution in the field. The DEM obtained with a resolution of 30 mm showed a high potential for the study of micro-rill processes and TI and CTI indices were able to predict zones of copper accumulation at a plot scale.
    Science of The Total Environment 05/2015; 514(1):298-306. DOI:10.1016/j.scitotenv.2015.01.109