Water Research (WATER RES)

Publisher: International Association on Water Pollution Research; International Association on Water Pollution Research and Control; International Association on Water Quality, Elsevier

Journal description

Water Research publishes refereed, original research papers on all aspects of the science and technology of water quality and its management worldwide. A broad outline of the journal's scope includes: Treatment processes for water and wastewaters, municipal, agricultural and industrial, including residuals management. Water quality standards and the analysis, monitoring and assessment of water quality by chemical, physical and biological methods. Studies on inland, tidal or coastal waters, including surface and ground waters, and point and non-point sources of pollution. The limnology of lakes, impoundments and rivers. Solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions. Environmental restoration, including soil and groundwater remediation. Analysis of the interfaces between sediments and water, and water/atmosphere interactions. The application of mathematical and modelling techniques. Public health and risk assessment. Education and training.

Current impact factor: 5.32

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 5.323
2012 Impact Factor 4.655
2011 Impact Factor 4.865
2010 Impact Factor 4.546
2009 Impact Factor 4.355
2008 Impact Factor 3.587
2007 Impact Factor 3.427
2006 Impact Factor 2.459
2005 Impact Factor 3.019
2004 Impact Factor 2.304
2003 Impact Factor 1.812
2002 Impact Factor 1.611
2001 Impact Factor 1.376
2000 Impact Factor 1.285
1999 Impact Factor 1.748
1998 Impact Factor 1.616
1997 Impact Factor 1.512

Impact factor over time

Impact factor

Additional details

5-year impact 5.39
Cited half-life 8.30
Immediacy index 0.64
Eigenfactor 0.07
Article influence 1.44
Website Water Research website
Other titles Water research
ISSN 0043-1354
OCLC 1769499
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, arXiv.org or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles <5mm), have reached high densities (e.g., 100 000 items per m3) in waters and sediments, and are interacting with organisms and the environment in a variety of ways. Early investigations of freshwater systems suggest microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics.
    Water Research 05/2015; 75. DOI:10.1016/j.watres.2015.02.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface water contamination by human faecal wastes is a widespread hazard for human health. Faecal indicator bacteria (FIB) are the most widely used indicators to assess surface water quality but are less-human-specific and have the potential to survive longer and/or occur naturally in tropical areas. In this study, 13 wastewater chemicals (chloride, boron, orthosphophate, detergents as methylene blue active substances, cholesterol, cholestanol, coprostanol, diethylhexyl phthalate, caffeine, acetaminophen, ibuprofen, sucralose and saccharin) were investigated in order to evaluate tracers for human faecal and sewage contamination in tropical urban catchments. Surface water samples were collected at an hourly interval from sampling locations with distinct major land uses: high-density residential, low-density residential, commercial and industrial. Measured concentrations were analysed to investigate the association among indicators and tracers for each land-use category. Better correlations were found between different indicators and tracers in each land-use dataset than in the dataset for all land uses, which shows that land use is an important determinant of drain water quality. Data were further segregated based on the hourly FIB concentrations. There were better correlations between FIB and chemical tracers when FIB concentrations were higher. Therefore, sampling programs must be designed carefully to take the time of sampling and land use into account in order to effectively assess human faecal and sewage contamination in urban catchments. FIB is recommended as the first tier in assessment of surface water quality impairment and chemical tracers as the second tier. Acetaminophen and coprostanol are recommended as chemical tracers for high-density residential areas, while chloride, coprostanol and caffeine are recommended for low-density residential areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 05/2015; 75:270-281. DOI:10.1016/j.watres.2015.02.037
  • [Show abstract] [Hide abstract]
    ABSTRACT: To mitigate potential eutrophication risk caused by nitrogen species in the effluent of wastewater treatment plant (WWTP), nitrogenous compounds failed to be removed during biological wastewater treatment should be further eliminated. In this paper, an electrochemical process for ammonia-oxidation, nitrate-reduction and disinfection (eAND process) of WWTP effluent was developed and its performance for tertiary treatment of synthetic wastewater and actual effluent was evaluated. Results indicated ammonia and nitrate removal efficiencies in actual effluent reached 96% and 36% at 1.23 Ah l(-1), while coliforms were totally inactivated at 0.072 Ah l(-1) under the optimal operation conditions. Ammonia removal due to the anodic indirect oxidation followed a pseudo first kinetic, while the modified model expressed as exponential decay fitted well to the experimental data with the presence of nitrate. The coliforms inactivation was attributed to the in situ generated active chlorine, indicating no extra addition of disinfectant. Nitrate reduction in cathodic area fitted to pseudo first order kinetic with kinetic constants of 0.13-0.54 l A(-1) h(-1). These results clearly showed the potential of this eAND process to serve as a tertiary treatment of WWTP effluent for simultaneous removal of ammonia, nitrate and disinfection. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 05/2015; 74. DOI:10.1016/j.watres.2015.02.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrate dosing is widely used to control sulfide and methane formation in sewers. The impact of nitrate on sulfide and methane production by sewer biofilms in rising mains has been elucidated recently. However, little is known about the effect of nitrate on biologically active sewer sediment, which is substantially thicker than rising main biofilms (centimeters vs. hundreds of micrometers, respectively). In this study, we investigated the effect of nitrate addition to sewer sediment cultivated in lab-scale sewer sediment reactors. Batch test results showed that nitrate addition does not suppress sulfide production in sewer sediment, but it reduces sulfide accumulation through anoxic sulfide oxidation in the sediment and hence, also reduces sulfide accumulation in the bulk water. Microsensor measurement of sediment sulfide revealed the presence of sulfide oxidation and sulfide production zones with the interface dynamically regulated by the depth of nitrate penetration. In contrast, the methane production activity of sewer sediment was substantially reduced, likely due to the long-term inhibitory effects of nitrate on methanogens. Pore water measurements showed that methane production activity in the sediment zone with frequent nitrate exposure was completely suppressed, and consequently, the methane production zone re-established deeper in the sediment where nitrate penetration was infrequent. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 05/2015; 74. DOI:10.1016/j.watres.2015.02.017
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rheological properties are key criteria for sewage sludge management but are difficult to determine in situ. Because the literature often links rheological characteristics to surface charges of particles that interact, the underlying electrostatic interactions could be key characteristics explaining the rheological behavior of sludge. This paper analyzed the impact of temperature on both rheological and electrical properties. Both liquid and solid properties appear to be related to electrical impedance spectroscopy measurements because they obey the same relationships with the same activation energies. Infinite viscosity follows an Arrhenius law with temperature, whereas the storage modulus shows VTF (Vogel–Tamman–Fulcher) behavior. Sludge electrical behavior can be modeled by an equivalent 2-branch parallel circuit whose respective impedances follow Arrhenius and VTF relationships. More interestingly, resistors are proportional to (dissipative) viscous characteristics, whereas capacitances are proportional to the (storage) elastic modulus. These similarities and relationships underlie the same interactions that seem to be involved in both rheological and electrical properties. These interdependences are quite logical but open new insights into sludge characterization.
    Water Research 04/2015; 73. DOI:10.1016/j.watres.2015.01.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: For a round robin test for EN 1420-1 (Odour assessment for organic materials in contact with drinking water) with 14 contributing laboratories from 10 European countries segments of a plastic pipe were sent to the laboratories which performed a migration test and an odour analysis of the migration waters (water that had contact with the organic material) according to the procedure described in the standard from 1999. In addition reference substances (Methyl tert-butyl ether, 1-butanol and hexanal) were investigated for their suitability to qualify the panels and the individual panellists. Methyl tert-butyl ether (MtBE) and 1-butanol proved to be suitable for this purpose, whereas hexanal showed a wide distribution of the individual odour threshold concentrations. Both possible testing options (unforced and forced choice) were performed and gave similar results. However, with respect to the qualification of the panellists and the data analysis the unforced choice procedure showed advantages. As human olfactory perception is used for the analysis, the reproducibility and the comparability between laboratories is of particular concern. For the pipe material the TON results of the different laboratories were in a range of ±1.5 dilutions based on a dilution factor of 2. This might be improved by taking the individual sensitivities of the panellists into account more strongly. Appropriate measures for the improvement of the test method appear to be the use of the proposed reference substances for the training of the panellists as well as the auditing and the selection of the panellists. The results of this round robin test are used in the revision process of the standard. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 04/2015; 73. DOI:10.1016/j.watres.2015.01.032
  • Water Research 03/2015; Accepted.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Given the wide presence of heterogeneous natural organic matter (NOM) and metal ions (Na+/Ca2+/Mg2+), as well as their significant role in governing nanoparticle stability in aqueous environments, it is of great importance to understand how the molecular weight (MW)-dependent physicochemical properties of NOM impact fundamental transportation processes like the aggregation of engineered nanoparticles (ENPs) in the presence of Na+/Ca2+/Mg2+. Here, we report on the aggregation behavior of a model ENP, fullerene nanoparticles (nC60) in the presence of five MW fractions of Suwannee River NOM (Mf-SRNOMs, separated by ultrafiltration techniques) and three electrolytes (NaCl, CaCl2 and MgCl2). We found that in all NaCl treatments and low concentration CaCl2/MgCl2 treatments, the enhancement of nC60 stability positively correlated with the MW of Mf-SRNOMs. Whereas, the stability efficiency of identical Mf-SRNOM in different electrolytes followed an order of NaCl > MgCl2 > CaCl2, and the enhanced attachment of nC60-SRNOM associations was observed in high MW Mf-SRNOM (SRNOM>100 kD and SRNOM 30–100 kD) at high concentration CaCl2/MgCl2. Our results indicate that although the high MW NOM with large humic-like material is the key component for stabilizing nC60 in monovalent electrolyte, it could play a reversed role in promoting the attachment of nC60, especially in long term aggregations and at high concentrations of divalent cations. Therefore, a detailed understanding of the effects of heterogeneous NOM on the aggregation of ENPs should be highly valued, and properly assessed against different cation species and concentrations.
    Water Research 03/2015; 71:11-20. DOI:10.1016/j.watres.2014.12.025
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidences suggest that nanoscale zero-valent iron (nZVI) is an effective agent for treatment and removal of selenium from water. For example, 1.3 mM selenite was quickly removed from water within 3 min with 5 g/L nZVI. In this work, reaction mechanisms of selenite [Se(IV)] in a single core–shell structured nanoscale zero-valent iron (nZVI) particle were studied with the method of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) integrated with X-ray energy dispersive spectroscopy (XEDS). This method was utilized to visualize solid phase translocation and transformation of Se(IV) such as diffusion, reduction, deposition and the effect of surface defects in a single nanoparticle. Se(IV) was reduced to Se(-II) and Se(0), which then formed a 0.5 nm layer of selenium at the iron oxide-Fe(0) interface at a depth of 6 nm from the surface. The results provided near atomic-resolution proof on the intraparticle diffusion-reduction of Se(IV) induced by nZVI. The STEM mapping also discovered that defects on the surface layer accelerate the diffusion of selenium and increase the capacity of nZVI for selenium sequestration.
    Water Research 03/2015; 71. DOI:10.1016/j.watres.2015.01.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O–N/Kg consumed or 6.8% of the influent load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20–30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale.
    Water Research 03/2015; 71. DOI:10.1016/j.watres.2014.12.032