Water Research (WATER RES)

Publisher: International Association on Water Pollution Research; International Association on Water Pollution Research and Control; International Association on Water Quality, Elsevier

Journal description

Water Research publishes refereed, original research papers on all aspects of the science and technology of water quality and its management worldwide. A broad outline of the journal's scope includes: Treatment processes for water and wastewaters, municipal, agricultural and industrial, including residuals management. Water quality standards and the analysis, monitoring and assessment of water quality by chemical, physical and biological methods. Studies on inland, tidal or coastal waters, including surface and ground waters, and point and non-point sources of pollution. The limnology of lakes, impoundments and rivers. Solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions. Environmental restoration, including soil and groundwater remediation. Analysis of the interfaces between sediments and water, and water/atmosphere interactions. The application of mathematical and modelling techniques. Public health and risk assessment. Education and training.

Current impact factor: 5.32

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 5.323
2012 Impact Factor 4.655
2011 Impact Factor 4.865
2010 Impact Factor 4.546
2009 Impact Factor 4.355
2008 Impact Factor 3.587
2007 Impact Factor 3.427
2006 Impact Factor 2.459
2005 Impact Factor 3.019
2004 Impact Factor 2.304
2003 Impact Factor 1.812
2002 Impact Factor 1.611
2001 Impact Factor 1.376
2000 Impact Factor 1.285
1999 Impact Factor 1.748
1998 Impact Factor 1.616
1997 Impact Factor 1.512

Impact factor over time

Impact factor
Year

Additional details

5-year impact 5.39
Cited half-life 8.30
Immediacy index 0.64
Eigenfactor 0.07
Article influence 1.44
Website Water Research website
Other titles Water research
ISSN 0043-1354
OCLC 1769499
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, arXiv.org or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles <5mm), have reached high densities (e.g., 100 000 items per m3) in waters and sediments, and are interacting with organisms and the environment in a variety of ways. Early investigations of freshwater systems suggest microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics.
    Water Research 05/2015; 75. DOI:10.1016/j.watres.2015.02.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high aggregation ability of anammox sludge has been extensively observed, but the cause for their aggregation is challenging. Here the structure and composition of extracellular polymeric substance (EPS) excreted from anammox sludge were systematically investigated to interpret the high aggregation ability. We combine results of contact angle, zeta potential and surface thermodynamics analysis as well as the following DLVO theory to address this issue. The results show that hydrophobic interaction is the main force determining the aggregation of anammox sludge. To go insight into inherent mechanism, Fourier transform infrared (FTIR) and x-ray photoelectron (XPS) spectroscopy were conducted and demonstrated there were comparatively few hydrophilic functional groups in the EPS of anammox sludge, compared to that of activated sludge, nitrifying and denitrifying sludge. Further, amino acid composition and secondary structure analyses of protein indicated that large amounts of hydrophobic amino acids and high level of protein loose structure for exposing inner hydrophobic groups of protein in EPS significantly contributed to the hydrophobic interaction and further to the high aggregation ability of anammox sludge, which is the critical finding of this work. This investigation is useful for understanding anammox bacteria and then for accelerating the application of the anammox process in wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 05/2015; 75. DOI:10.1016/j.watres.2015.02.031
  • [Show abstract] [Hide abstract]
    ABSTRACT: To mitigate potential eutrophication risk caused by nitrogen species in the effluent of wastewater treatment plant (WWTP), nitrogenous compounds failed to be removed during biological wastewater treatment should be further eliminated. In this paper, an electrochemical process for ammonia-oxidation, nitrate-reduction and disinfection (eAND process) of WWTP effluent was developed and its performance for tertiary treatment of synthetic wastewater and actual effluent was evaluated. Results indicated ammonia and nitrate removal efficiencies in actual effluent reached 96% and 36% at 1.23 Ah l(-1), while coliforms were totally inactivated at 0.072 Ah l(-1) under the optimal operation conditions. Ammonia removal due to the anodic indirect oxidation followed a pseudo first kinetic, while the modified model expressed as exponential decay fitted well to the experimental data with the presence of nitrate. The coliforms inactivation was attributed to the in situ generated active chlorine, indicating no extra addition of disinfectant. Nitrate reduction in cathodic area fitted to pseudo first order kinetic with kinetic constants of 0.13-0.54 l A(-1) h(-1). These results clearly showed the potential of this eAND process to serve as a tertiary treatment of WWTP effluent for simultaneous removal of ammonia, nitrate and disinfection. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 05/2015; 74. DOI:10.1016/j.watres.2015.02.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrate dosing is widely used to control sulfide and methane formation in sewers. The impact of nitrate on sulfide and methane production by sewer biofilms in rising mains has been elucidated recently. However, little is known about the effect of nitrate on biologically active sewer sediment, which is substantially thicker than rising main biofilms (centimeters vs. hundreds of micrometers, respectively). In this study, we investigated the effect of nitrate addition to sewer sediment cultivated in lab-scale sewer sediment reactors. Batch test results showed that nitrate addition does not suppress sulfide production in sewer sediment, but it reduces sulfide accumulation through anoxic sulfide oxidation in the sediment and hence, also reduces sulfide accumulation in the bulk water. Microsensor measurement of sediment sulfide revealed the presence of sulfide oxidation and sulfide production zones with the interface dynamically regulated by the depth of nitrate penetration. In contrast, the methane production activity of sewer sediment was substantially reduced, likely due to the long-term inhibitory effects of nitrate on methanogens. Pore water measurements showed that methane production activity in the sediment zone with frequent nitrate exposure was completely suppressed, and consequently, the methane production zone re-established deeper in the sediment where nitrate penetration was infrequent. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 05/2015; 74. DOI:10.1016/j.watres.2015.02.017
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rheological properties are key criteria for sewage sludge management but are difficult to determine in situ. Because the literature often links rheological characteristics to surface charges of particles that interact, the underlying electrostatic interactions could be key characteristics explaining the rheological behavior of sludge. This paper analyzed the impact of temperature on both rheological and electrical properties. Both liquid and solid properties appear to be related to electrical impedance spectroscopy measurements because they obey the same relationships with the same activation energies. Infinite viscosity follows an Arrhenius law with temperature, whereas the storage modulus shows VTF (Vogel–Tamman–Fulcher) behavior. Sludge electrical behavior can be modeled by an equivalent 2-branch parallel circuit whose respective impedances follow Arrhenius and VTF relationships. More interestingly, resistors are proportional to (dissipative) viscous characteristics, whereas capacitances are proportional to the (storage) elastic modulus. These similarities and relationships underlie the same interactions that seem to be involved in both rheological and electrical properties. These interdependences are quite logical but open new insights into sludge characterization.
    Water Research 04/2015; 73. DOI:10.1016/j.watres.2015.01.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maintaining low nitrite concentrations in aquatic systems is a major issue for stakeholders due to nitrite's high toxicity for living species. This study reports on a cost-effective and realistic approach to study nitrite dynamics and improve its modelling in human-impacted river systems. The implementation of different nitrifying biomasses to model riverine communities and waste water treatment plant (WWTP)-related communities enabled us to assess the impact of a major WWTP effluent on in-river nitrification dynamics. The optimal kinetic parameters and biomasses of the different nitrifying communities were determined and validated by coupling laboratory experiments and modelling. This approach was carried out in the Seine River, as an example of a large human-impacted river with high nitrite concentrations. The simulation of nitrite fate was performed at a high spatial and temporal resolution (Δt = 10 min, dx¯ = 500 m) including water and sediment layers along a 220 km stretch of the Seine River for a 6-year period (2007-2012). The model outputs were in good agreement with the peak of nitrite downstream the WWTP as well as its slow decrease towards the estuary. Nitrite persistence between the WWTP and the estuary was mostly explained by similar production and consumption rates of nitrite in both water and sediment layers. The sediment layer constituted a significant source of nitrite, especially during high river discharges (0.1-0.4 mgN h(-1) m(-2)). This points out how essential it is to represent the benthic layer in river water quality models, since it can constitute a source of nitrite to the water-column. As a consequence of anthropogenic emissions and in-river processes, nitrite fluxes to the estuary were significant and varied from 4.1 to 5.5 TN d(-1) in low and high water discharge conditions, respectively, over the 2007-2012 period. This study provides a methodology that can be applied to any anthropized river to realistically parametrize autochthonous and WWTP-related nitrifier communities and simulate nitrite dynamics. Based on simulation analysis, it is shown that high spatio-temporal resolution hydro-ecological models are efficient to 1) estimate water quality criteria and 2) forecast the effect of future management strategies. Process-based simulations constitute essential tools to complete our understanding of nutrient cycling, and to decrease monitoring costs in the context of water quality and eutrophication management in river ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 04/2015; 73. DOI:10.1016/j.watres.2015.01.026
  • [Show abstract] [Hide abstract]
    ABSTRACT: For a round robin test for EN 1420-1 (Odour assessment for organic materials in contact with drinking water) with 14 contributing laboratories from 10 European countries segments of a plastic pipe were sent to the laboratories which performed a migration test and an odour analysis of the migration waters (water that had contact with the organic material) according to the procedure described in the standard from 1999. In addition reference substances (Methyl tert-butyl ether, 1-butanol and hexanal) were investigated for their suitability to qualify the panels and the individual panellists. Methyl tert-butyl ether (MtBE) and 1-butanol proved to be suitable for this purpose, whereas hexanal showed a wide distribution of the individual odour threshold concentrations. Both possible testing options (unforced and forced choice) were performed and gave similar results. However, with respect to the qualification of the panellists and the data analysis the unforced choice procedure showed advantages. As human olfactory perception is used for the analysis, the reproducibility and the comparability between laboratories is of particular concern. For the pipe material the TON results of the different laboratories were in a range of ±1.5 dilutions based on a dilution factor of 2. This might be improved by taking the individual sensitivities of the panellists into account more strongly. Appropriate measures for the improvement of the test method appear to be the use of the proposed reference substances for the training of the panellists as well as the auditing and the selection of the panellists. The results of this round robin test are used in the revision process of the standard. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 04/2015; 73. DOI:10.1016/j.watres.2015.01.032
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that Microtrix parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of Microthrix parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling conditions - can be used.
    Water Research 04/2015; DOI:10.1016/j.watres.2015.04.003