Water Research (WATER RES)

Publisher: International Association on Water Pollution Research; International Association on Water Pollution Research and Control; International Association on Water Quality, Elsevier

Journal description

Water Research publishes refereed, original research papers on all aspects of the science and technology of water quality and its management worldwide. A broad outline of the journal's scope includes: Treatment processes for water and wastewaters, municipal, agricultural and industrial, including residuals management. Water quality standards and the analysis, monitoring and assessment of water quality by chemical, physical and biological methods. Studies on inland, tidal or coastal waters, including surface and ground waters, and point and non-point sources of pollution. The limnology of lakes, impoundments and rivers. Solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions. Environmental restoration, including soil and groundwater remediation. Analysis of the interfaces between sediments and water, and water/atmosphere interactions. The application of mathematical and modelling techniques. Public health and risk assessment. Education and training.

Current impact factor: 5.53

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 5.528
2013 Impact Factor 5.323
2012 Impact Factor 4.655
2011 Impact Factor 4.865
2010 Impact Factor 4.546
2009 Impact Factor 4.355
2008 Impact Factor 3.587
2007 Impact Factor 3.427
2006 Impact Factor 2.459
2005 Impact Factor 3.019
2004 Impact Factor 2.304
2003 Impact Factor 1.812
2002 Impact Factor 1.611
2001 Impact Factor 1.376
2000 Impact Factor 1.285
1999 Impact Factor 1.748
1998 Impact Factor 1.616
1997 Impact Factor 1.512

Impact factor over time

Impact factor

Additional details

5-year impact 6.28
Cited half-life 8.20
Immediacy index 0.97
Eigenfactor 0.08
Article influence 1.59
Website Water Research website
Other titles Water research
ISSN 0043-1354
OCLC 1769499
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: An investigation of three seawater reverse osmosis facilities located along the shoreline of the Red Sea of Saudi Arabia that use well intake systems showed that the pumping-induced flow of raw seawater through a coastal aquifer significantly improves feed water quality. A comparison between the surface seawater and the discharge from the wells shows that turbidity, algae, bacteria, total organic carbon, most fractions of natural organic matter (NOM), and particulate and colloidal transparent exopolymer particles (TEP) have significant reductions in concentration. Nearly all of the algae, up to 99% of the bacteria, between 84 and 100% of the biopolymer fraction of NOM, and a high percentage of the TEP were removed during transport. The data suggest that the flowpath length and hydraulic retention time in the aquifer play the most important roles in removal of the organic matter. Since the collective concentrations of bacteria, biopolymers, and TEP in the intake seawater play important roles in the biofouling of SWRO membranes, the observed reductions suggest that the desalination facilities that use well intakes systems will have a potentially lower fouling rate compared to open-ocean intake systems. Furthermore, well intake system intakes also reduce the need for chemical usage during complex pretreatment systems required for operation of SWRO facilities using open-ocean intakes and reduce environmental impacts.
    Water Research 01/2016; 88:216-224. DOI:10.1016/j.waters.2015.10.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate interactions between oppositely charged fluorescent dyes and dissolved humic substances, fluorescence quenching of fluorescein and rhodamine 6G with dissolved humic substances was performed. Binding coefficients were obtained by the Stern-Volmer equation. The fluorescence of rhodamine 6G was largely quenched by the addition of humic acid and a non-linear Stern-Volmer plot was obtained. This strong quenching may be caused by the electrostatic interaction between cationic rhodamine 6G and humic acid and strengthened by the hydrophobic repulsion. In contrast, the quenching and interactive effects of dissolved humic substances for fluorescein were relatively weak. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Water Research 11/2015; 85:193-198. DOI:10.1016/j.watres.2015.08.039