Archiv für Experimentelle Pathologie und Pharmakologie (N-S ARCH PHARMACOL )

Publisher: Springer Verlag


Naunyn-Schmiedeberg's Archives of Pharmacology was founded in 1873 as "Archiv für experimentelle Pathologie und Pharmakologie" by B. Naunyn O. Schmiedeberg E. Klebs. In cooperation with colleagues it was edited by L. Krehl W. Straub W. Heubner and others; from Vol. 208 No. 2 on edited in cooperation with the Deutsche Pharmakologische Gesellschaft. Vols. 1-158 (1930) Leipzig F.C.W. Vogel Vols. 159-196 (1940) Berlin F.C.W. Vogel; from Vol. 197 on Berlin Springer. Vols. 110 to 253 "Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie"; from Vol. 254 (1966) to 263 "Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie"; from Vol. 264 (1969) to 271 "Naunyn-Schmiedebergs Archiv für Pharmakologie"; from Vol. 272 (1972) "Naunyn-Schmiedeberg's Archives of Pharmacology". As of Vol. 343 (1991) edited on behalf of the Deutsche Gesellschaft für Pharmakologie und Toxikologie; from Vol. 349 (1994) Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie e.V.

  • Impact factor
    Hide impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Naunyn-Schmiedeberg's Archives of Pharmacology website
  • Other titles
    Naunyn-Schmiedeberg's archives of pharmacology (Online), Archives of pharmacology
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis is characterized by a severe production of reactive oxygen species (ROS) and other radical species with consequent oxidative stress. S-allyl cysteine (SAC) is a water-soluble organosulfur component present in garlic which is a potent antioxidant and free radical scavenger. In the present study, the purpose was to explore the anti-inflammatory, antioxidant, and anti-apoptotic actions of SAC on lipopolysaccharide (LPS)-induced sepsis in rats. Thirty-two male Wistar rats were separated into 4 groups. These were control, SAC control, sepsis, and sepsis + SAC-induced groups. Sepsis was induced by administration of LPS (5 mg/kg) into 2 groups. SAC (50 mg/kg) was given orally to SAC control and SAC treatment groups per 12 h during 2 days after intraperitoneal LPS injection. Serum AST, ALT, ALP, and hsCRP levels and liver and lung MPO, NO, and DNA fragmentation levels were evaluated. In sepsis group, elevated levels of ALT, AST, ALP, and hsCRP were observed. The abnormal increases were decreased in sepsis + SAC group compared to sepsis group. In lung tissue, MPO and NO levels were increased in sepsis group compared to the control group. MPO activity and NO levels were decreased by SAC application in sepsis + SAC group compared with sepsis group. In liver tissue, DNA fragmentation was significantly higher in sepsis group than that in the control group. In contrast, a decreased level of DNA fragmentation was noted in sepsis + SAC group when compared with the sepsis group. In conclusion, SAC ameliorates LPS-induced indicators of liver damage and suppresses the discharge of NO and MPO in lung tissue via its antioxidant properties.
    Archiv für Experimentelle Pathologie und Pharmakologie 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Baicalin, a flavonoid isolated from Scutellaria baicalensis, is known to have multiple biological functions. Recent studies have demonstrated that baicalin treatment increases alkaline phosphatase activity (ALP) and osteoprotegerin secretion by osteoblasts. Furthermore, baicalin induces the differentiation of cultured osteoblasts via the activation of the Wnt/β-catenin signaling pathway. In this study, we evaluated the hair growth-promoting effects of baicalin in human follicular dermal papilla (DP) cells. A reporter assay and Western blotting were used to assess the effect of baicalin on β-catenin signaling in DP cells. ALP activity and messenger RNA (mRNA) expression were examined by ALP staining and real-time polymerase chain reaction (PCR), respectively. Growth factor expression levels were also evaluated using real-time PCR. Finally, the effect of baicalin on hair growth in vivo was examined by topical application of baicalin on the shaved dorsal skin of C57BL/6 mice. Our results indicate that baicalin activates Wnt/β-catenin signaling in a dose-dependent manner in human DP cells. ALP mRNA expression and activity were significantly induced in the presence of baicalin. In addition, treatment with baicalin induced the mRNA expression of growth factors, such as insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF). Moreover, compared to vehicle treatment, baicalin treatment induced an earlier conversion from telogen to anagen. Our results strongly suggest that baicalin promotes hair growth by regulating the activity of DP cells.
    Archiv für Experimentelle Pathologie und Pharmakologie 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Oxidative injury is markedly responsible for wound complications in diabetes mellitus. The biological actions of bilirubin may be relevant to prevent oxidant-mediated cell death, as bilirubin application at a low concentration scavenges reactive oxygen species. Hence, we hypothesized that topical bilirubin application might improve wound healing in diabetic rats. Diabetes was induced in adult male Wistar rats, which were divided into two groups, i.e., diabetic control and diabetic treated. Non-diabetic healthy rats were also taken as healthy control group. Wound area was measured on days 3, 7, 14, and 19 post-wounding. The levels of malondialdehyde (MDA) and reduced glutathione (GSH) and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were estimated in the granulation tissue. There was a significant increase in percent wound closure in healthy control and diabetic treated rats on days 7, 14, and 19, as compared to diabetic control rats on days 7, 14, and 19. There was significant decrease in MDA levels on days 7, 14, and 19 in diabetic treated rats, as compared to diabetic control rats. Levels of GSH were significantly increased on days 3, 7, 14, and 19 in diabetic treated rats, as compared to diabetic control rats. GPx, SOD, and CAT activities were significantly higher on days 3, 7, and 14 in diabetic treated rats, as compared to diabetic control rats. The findings indicate that bilirubin is effective in reducing the oxidant status in wounds of diabetic rats which might have accelerated wound healing in these rats.
    Archiv für Experimentelle Pathologie und Pharmakologie 10/2014; 387(10):955-61.
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the aim of discovering potential cytotoxic agents, a series of benzochromene derivatives were screened for their cytotoxic activity against seven human cancer cell lines by standard 3-(4, 5-dimethyl thiazol)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis, as the mechanism of cell death, was investigated morphologically by acridine orange/ethidium bromide staining and cell surface expression assay of phosphatidylserine by Annexin V-PE/7-AAD technique. The effects of compounds on reactive oxygen species (ROS) and nitric oxide (NO) generations in three human breast cancer cell lines were also studied. All compounds showed significant cytotoxic activity with inhibitory concentration (IC50) values in the micromolar range (4.6-21.5 μM). The results of apoptosis evaluation suggested that the cytotoxic activity of these compounds in breast cancer cells occurs via apoptosis. MCF-7 cell line showed higher levels of ROS and NO production after treatment with compounds. The increase in ROS production after 4 and 24 h indicated that one of the ways that these compounds can induce apoptosis is by increasing ROS generation. Cytotoxic and apoptotic effects of these compounds in human cancer cells indicated that they can be a good candidate for further pharmacological studies to discover effective anticancer agents.
    Archiv für Experimentelle Pathologie und Pharmakologie 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies suggest that increased activity of Gi contributes to the reduced β-adrenoceptor-mediated inotropic response (βAR-IR) in failing cardiomyocytes and that β2AR-IR but not β1AR-IR is blunted by dual coupling to Gs and Gi. We aimed to clarify the role of Gi upon the β1AR-IR and β2AR-IR in Sham and failing myocardium by directly measuring contractile force and cAMP accumulation. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation in cardiomyocytes from rats with post-infarction heart failure (HF) or sham operates (Sham). The β2AR-IR in Sham and HF was small and was amplified by simultaneously inhibiting phosphodiesterases 3 and 4 (PDE3&4). In HF, the inotropic response and cAMP accumulation evoked by β1AR- or β2AR-stimulation were reduced. Inactivation of Gi with pertussis toxin (PTX) did not restore the β1AR-IR or β2AR-IR in HF to Sham levels but did enhance the maximal β2AR-IR. PTX increased both β1AR- and β2AR-evoked cAMP accumulation more in Sham than that in HF, and HF levels approached those in untreated Sham. The potency of agonists at β1 and at β2ARs (only under PDE3&4 inhibition) was increased in HF and by PTX in both HF and Sham. Without PDE3&4 inhibition, PTX increased only the maximal β2AR-IR, not potency. We conclude that Gi regulates both β1AR- and β2AR-IR independent of receptor coupling with Gi. Gi together with PDE3&4 tonically restrict the β2AR-IR. Gi inhibition did not restore the βAR-IR in HF despite increasing cAMP levels, suggesting that the mechanism of impairment resides downstream to cAMP signalling.
    Archiv für Experimentelle Pathologie und Pharmakologie 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence for a role of cytidine 3',5'-cyclic monophosphate (cCMP) as second messenger. In a recent study, we showed that cCMP activates both purified guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase Iα (PKG Iα) and adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) isoenzymes with the regulatory subunits RIα and RIIα. Moreover, the membrane-permeant cCMP analog dibutyryl (DB)-cCMP induces effective vasodilation and inhibition of platelet aggregation via PKG Iα, but not via PKA. These data prompted us to conduct a systematic analysis of the effects of cyclic nucleotide (cNMP) analogs on purified PKG Iα and PKA RIα and RIIα We also studied the effect of DB-cCMP on PKA-dependent phosphorylation of the transcription factor cAMP response-binding protein (CREB) in S49 wild-type lymphoma cells and S49 kin(-) cells, devoid of the catalytic subunit of PKA. The major cellular metabolite of the prodrug DB-cCMP, N(4)-monobutyryl (4-MB)-cCMP, was a partial and low-potency activator of purified PKG Iα and a full and moderate-potency activator of PKA RIα and RIIα. Sp-cCMPS and Sp-cAMPS activated PKA RIα and RIIα with much higher potency and efficacy than PKG Iα. Molecular modeling suggested that the cytidine ring interacts with PKG Iα mainly via hydrophobic interactions, while the butyryl group projects away from the kinase. In contrast to DB-cAMP, DB-cCMP did not induce PKA-dependent phosphorylation in intact cells. Taken together, our data show that N(4)-monobutyryl-cCMP (4-MB-cCMP) activates PKA RIα and PKA RIIα more potently and with higher efficacy than PKG Iα in vitro but not in vivo. cNMP phosphorothioates constitute a starting point for the development of PKA activators with high selectivity relative to PKG.
    Archiv für Experimentelle Pathologie und Pharmakologie 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dronedarone is a novel class III antiarrhythmic drug that is widely used in atrial fibrillation. It has been shown in native cardiomyocytes that dronedarone inhibits cardiac inwardly rectifying current IK1 at high concentrations, which may contribute both its antifibrillatory efficacy and its potential proarrhythmic side effects. However, the underlying mechanism has not been studied in further detail to date. In the mammalian heart, heterotetrameric assembly of Kir2.x channels is the molecular basis of IK1 current. Therefore, we studied the effects of dronedarone on wild-type and mutant Kir2.x channels in the Xenopus oocyte expression system. Dronedarone inhibited Kir2.1 currents but had no effect on Kir2.2 or Kir2.3 currents. Onset of block was slow but completely reversible upon washout. Blockade of Kir2.1 channels did not exhibit strong voltage dependence or frequency dependence. In a screening with different Kir2.1 mutants lacking specific binding sites within the cytoplasmic pore region, we found that residue E224 is essential for binding of dronedarone to Kir2.1 channels. In conclusion, direct block of Kir2.1 channel subunits by dronedarone through binding at E224 may underlie its inhibitory effects on cardiac IK1 current.
    Archiv für Experimentelle Pathologie und Pharmakologie 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is the commonest and most important vascular disease. Andrographolide (AND) is the main bioactive component of the medicinal plant Andrographis paniculata and is used in traditional medicine. This study was aimed to evaluate the antiatherogenic effect of AND against atherosclerosis induced by Porphyromonas gingivalis in White New Zealand rabbits. Thirty rabbits were divided into five groups as follows: G1, normal group; G2-5, were orally challenged with P. gingivalis five times a week over 12 weeks; G2, atherogenic control group; G3, standard group treated with atorvastatin (AV) 5 mg/kg; and G4 and G5, treatment groups treated with AND 10 and 20 mg/kg, respectively over 12 weeks. Serums were subjected to antioxidant enzymatic and anti-inflammatory activities, and the aorta was subjected to histological analyses. Groups treated with AND showed a significant reversal of liver and renal biochemical changes, compared with the atherogenic control group. In the same groups, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total glutathione (GSH) levels in serum were significantly increased (P < 0.05), and lipid peroxidation (malondialdehyde (MDA)) levels were significantly decreased (P < 0.05), respectively. Furthermore, treated groups with AV and AND showed significant decrease in the level of VCAM-1 and ICAM-1 compared with the atherogenic control group. In aortic homogenate, the level of nitrotyrosine was significantly increased, while the level of MCP1 was significantly decreased in AV and AND groups compared with the atherogenic control group. In addition, staining the aorta with Sudan IV showed a reduction in intimal thickening plaque in AV and AND groups compared with the atherogenic control group. AND has showed an antiatherogenic property as well as the capability to reduce lipid, liver, and kidney biomarkers in atherogenic serum that prevents atherosclerosis complications caused by P. gingivalis.
    Archiv für Experimentelle Pathologie und Pharmakologie 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: β3-Adrenoceptors play important roles in the regulation of urogenital and probably gastrointestinal function. However, despite recent progress, their detection at the protein level has remained difficult due to a lack of sufficiently validated selective antibodies. Therefore, we have explored the selectivity of two antibodies for the detection of rodent β3-adrenoceptors in immunoblots and immunohistochemistry. Of two reportedly promising candidates, antibody AB15688 did not exhibit subtype selectivity in immunoblots. In contrast, the antibody Sc1473 exhibited at least some selectivity in immunoblots and more promising results in immunocytochemical and immunohistochemical stains in cells transfected with cloned β-adrenoceptor subtypes and in rat and mouse tissues. In a systematic screening of rat gastrointestinal and urogenital tissues, Sc1473 produced selective staining in the epithelial cell lining of the stomach and the urothelium of ureter and bladder. We conclude that the two tested antibodies are inappropriate or at least insufficient for immunoblotting applications, but Sc1473 appears to be useful for immunohistochemical detection of β3-adrenoceptor protein in rodent tissues. The β3-adrenoceptor protein exhibits a distinct expression pattern in the rat gastrointestinal and urogenital tract, which is at least partly in line with previously reported functional data.
    Archiv für Experimentelle Pathologie und Pharmakologie 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nm23-H1 is a metastasis suppressor gene whose overexpression is associated with both reduced cell motility in various cancers and increased metastatic potential in neuroblastomas, osteosarcomas, and hematological malignances. We previously reported that Nm23-H1 exerts tumor suppressor action in prostate cancer cells and that h-Prune, which is overexpressed in various tumor types, binds Nm23-H1. Moreover, blockage of the Nm23-H1/h-Prune interaction with a competitive permeable peptide (CPP) attenuates migration of breast and neuroblastoma cells. This series of events suggests that the Nm23-H1/h-Prune protein complex regulates cancer progression and that its specific impairment could be a new therapeutic strategy in oncology. We found that CPP leads to inhibition of the AKT/mTORv and NF-kBv signaling pathways and also activates apoptosis. To obtain a proof-of-concept of our hypothesis, we used a xenograft model of prostate cancer to evaluate whether impairment of this complex using CPP results in an anti-tumoral effect. Using a mouse orthotopic model with bioluminescent imaging, we show evidences that CPP reduces prostate cancer metastases formation. In conclusion, CPP being able to impair formation of the h-Prune/Nm23-H1 complex holds promise for the treatment of prostate cancer.
    Archiv für Experimentelle Pathologie und Pharmakologie 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arsenic trioxide (As2O3) is used to treat acute promyelocytic leukemia. However, the cardiotoxicity of long QT syndrome restricts its clinical application. Previous studies showed that As2O3 can damage the human ether-a-go-go-related gene (hERG) current via disturbing its trafficking to cellular membrane. This study aimed to investigate whether the As2O3-insulted hERG channel can be rescued by resveratrol, a recognized cardioprotective agent. The whole-cell patch clamp technique was used to record the hERG current and action potential duration. Co-immunoprecipitation and Western blot assay were applied to determine the function of hERG-Hsp70/Hsp90 chaperone complexes and the expression alteration of protein-folding-related proteins, respectively. Compared with treatment of As2O3 alone, co-treatment with resveratrol successfully restored the current and surface expression of hERG and obviously shortened action potential duration in guinea pig ventricular myocytes. Further experiments demonstrate that resveratrol relieved As2O3-caused endoplasmic reticulum (ER) stress by restoring the function of hERG-Hsp70/Hsp90 chaperone complexes and downregulating the protein expression of ER chaperone proteins (calnexin and calreticulin) and activating transcription factor 6. In conclusion, resveratrol was able to rescue the trafficking deficiency and relieve the ER stress (ERS). Our findings suggest that resveratrol has a potential effect to alleviate the adverse effect of As2O3 on cardiotoxicity.
    Archiv für Experimentelle Pathologie und Pharmakologie 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renal inflammation is a final common pathway of chronic kidney disease (CKD), and its progression can be used to effectively gauge the degree of renal dysfunction. Interleukin-1 (IL-1) receptor-associated kinase 4 (IRAK-4) has been reported to be a pivotal molecule for IL-1 receptor- and Toll-like receptor-induced signaling and activation of proinflammatory mediators. In this study, we hypothesized that if inflammation plays a key role in renal failure, then the anti-inflammatory effect of IRAK-4 inhibitor should be effective in improving CKD. To determine its pharmacological potency, we investigated the renoprotective properties of the novel IRAK-4 inhibitor AS2444697 (N-[3-carbamoyl-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl]-2-(2-methylpyridin-4-yl)-1,3-oxazole-4-carboxamide hydrochloride (1:1)) in 5/6 nephrectomized (Nx) rats, a model of CKD. Six weeks' repeated administration of AS2444697 (0.3-3 mg/kg, twice daily) dose-dependently and significantly reduced urinary protein excretion and prevented the development of glomerulosclerosis and interstitial fibrosis without affecting the blood pressure. In addition, AS2444697 showed beneficial effects on renal function as demonstrated by the decrease in levels of plasma creatinine and blood urea nitrogen and attenuation of decline in creatinine clearance. 5/6 Nx rats exhibited low-grade inflammation as evidenced by increased renal mRNA expression and plasma levels of proinflammatory cytokines (IL-1β, IL-6, TNF-α, and MCP-1) and C-reactive protein as a marker of systemic inflammation. AS2444697 significantly reduced or showed a decreasing trend in expression and levels of these inflammatory parameters. These results suggest that AS2444697 suppresses the progression of chronic renal failure via anti-inflammatory action and may therefore be potentially useful in treating CKD patients.
    Archiv für Experimentelle Pathologie und Pharmakologie 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the fracture-healing effects of α-lipoic acid (α-LA), which was applied orally once daily in preventive treatment mode during 1 month after fracture induction. Rats were randomly divided into sham-operated group (group 1), femoral fracture control (group 2), femoral fracture + 25 mg/kg α-LA (group 3), and femoral fracture + 50 mg/kg α-LA (group 4). Rats in the experimental groups were orally administered 25 or 50 mg/kg α-LA once daily for 30 days starting from postoperative day 1. Thirty days postoperatively, the rats underwent X-ray imaging and were then euthanized for blood and tissue collection. Histopathological, biochemical, molecular, computed tomography (CT), and mechanical strength tests were performed on samples. The serum levels of osteocalcin (OC), osteopontin (OP), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) did not differ significantly between groups 2 and 3. Serum OC, OP, TNF-α, and IL-6 levels in group 4 were significantly lower than those in group 3. From X-ray images, staging for fracture healing was scored as <2 in group 2, >2 in group 3, and >3 in group 4. In group 2, the average score of less than 2 suggests insufficient fracture healing; those of both the α-LA groups were >2, indicating progression of healing. Transforming growth factor beta (TGF-β) messenger RNA (mRNA) levels were significantly higher in the sham group than in the femoral fracture control. Both doses of α-LA increased TGF-β mRNA expression compared to the fracture group. CT results and biomechanical testing at 4 week after fracture demonstrated that α-LA has fastened bone healing, which was confirmed by stereological analyses in which 50 mg/kg α-LA increased the number of osteoclasts. Our findings indicate that α-LA supplementation promotes healing of femoral fractures in rats.
    Archiv für Experimentelle Pathologie und Pharmakologie 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is renewed interest in the potential role of noncanonical 3′,5′-cyclic nucleoside monophosphates (cNMPs) as second messengers (Akimoto et al. 2014; Chen et al. 2014; Bähre et al. 2014). Inosine 3′,5′-cyclic monophosphosphate (cIMP) consists of the base hypoxanthine, the ribosyl moiety and a cyclic phosphate ester linking the 3′- and 5′-O-ribosyl groups (Fig. 1). cIMP differs chemically from the well-established second messenger guanosine 3′,5′-cyclic monophosphate (cGMP) (Schlossmann and Schinner 2012; Levy 2013) by the absence of the amino group at the 2′-position of the nucleobase (Fig. 1). The loss of the amino group results in a reduction in affinity of cIMP for the cGMP effector cGMP-dependent protein kinase Iα (PKGIα) by more than two orders of magnitude (Wolter et al. 2011) (Table 1).Fig. 1Structures of cIMP and cGMPcIMP is generated by highly purified soluble guanylyl cyclase (sGC) in an NO-dependent manner (Beste et al. 2012) and by recombinant particulate guanylyl cycla
    Archiv für Experimentelle Pathologie und Pharmakologie 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hormone-refractory metastatic prostate cancer (HRMPC), which is metastatic and resistant to hormone therapy, is an intractable problem in clinical treatment. Anthraquinone-based natural products and synthetic compounds have shown anticancer activity. However, cardiac toxicity is a major adverse reaction in these compounds. CC-36, a unique anthraquinone derivative, displayed higher antiproliferative activity in HRMPC than that in H9c2 cardiomyoblasts and normal prostate cells with the selectivity of five and twelve times, respectively. CC-36 caused G1 arrest of the cell cycle associated with an upregulation of p21 and downregulated levels of cyclin D1 and cyclin E expressions. Immunoprecipitation assay and Western blotting analysis showed that CC-36 triggered an increase of TSC1/TSC2 association and suppressed the phosphorylation of mammalian target of rapamycin (mTOR) (Ser2448) and p70 ribosomal protein S6 kinase (p70S6K) (Thr389), indicating the inhibition of both kinases' activities. CC-36 induced liver kinase B1 (LKB1) phosphorylation at Thr189, leading to LKB1 translocation from nucleus to cytosol for AMPKα phosphorylation (Thr172) and the kinase activation. The signaling pathway was validated using small interfering RNA (siRNA) technique with LKB1 knockdown. The combination treatment of MK2206 (a specific Akt inhibitor) with CC-36 showed a synergistic apoptosis in PC-3 cells indicating a potential combination strategy for LKB1 activators. Taken together, the data suggest that CC-36 displays anti-HRMPC activity through the activation of LKB1-AMPK pathway, leading to an inhibition of mTOR signaling and the induction of G1 arrest of the cell cycle. The combination use of Akt inhibitors with agents acting through LKB1-AMPK-mTOR pathway is a potential strategy for HRMPC treatment.
    Archiv für Experimentelle Pathologie und Pharmakologie 07/2014;