Journal of Plasma Physics Impact Factor & Information

Publisher: Cambridge University Press (CUP)

Journal description

Journal of Plasma Physics publishes primary research articles in plasma physics both theoretical and experimental and its applications. Basic topics include the fundamental physics of plasmas ionization kinetic theory particle orbits stochastic dynamics wave propagation solitons stability shock waves transport heating and diagnostics. Applications include fusion laboratory plasmas and communications devices laser plasmas technological plasmas space physics and astrophysics.

Current impact factor: 0.74

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 0.739
2012 Impact Factor 0.755
2011 Impact Factor 0.944
2010 Impact Factor 1.078
2009 Impact Factor 0.775
2008 Impact Factor 0.579
2007 Impact Factor 0.661
2006 Impact Factor 0.748
2005 Impact Factor 1.037
2004 Impact Factor 0.602
2003 Impact Factor 0.61
2002 Impact Factor 0.645
2001 Impact Factor 0.649
2000 Impact Factor 0.837
1999 Impact Factor 0.761
1998 Impact Factor 0.85
1997 Impact Factor 0.516
1996 Impact Factor 0.661
1995 Impact Factor 0.552
1994 Impact Factor 0.615
1993 Impact Factor 0.712
1992 Impact Factor 0.489

Impact factor over time

Impact factor
Year

Additional details

5-year impact 0.75
Cited half-life 0.00
Immediacy index 0.41
Eigenfactor 0.00
Article influence 0.33
Website Journal of Plasma Physics website
Other titles Journal of plasma physics
ISSN 0022-3778
OCLC 1754745
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Cambridge University Press (CUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's Pre-print on author's personal website, departmental website, social media websites, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv
    • Author's post-print on author's personal website on acceptance of publication
    • Author's post-print on departmental website, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv, after a 6 months embargo
    • Publisher's version/PDF cannot be used
    • Published abstract may be deposited
    • Pre-print to record acceptance for publication
    • Publisher copyright and source must be acknowledged with set statement, for deposit of Authors Post-print or Publisher's version/PDF
    • Must link to publisher version
    • Publisher last reviewed on 07/10/2014
    • This policy is an exception to the default policies of 'Cambridge University Press (CUP)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Simulation of free electron laser (FEL) with modified wiggler consisting of a conventional planar wiggler with third harmonic field component is presented. A set of self consistent nonlinear differential equations is derived and solved numerically by Runge-Kutta method. The optimum amplitudes of fundamental and third harmonic wiggler filed are obtained to increase the third harmonic radiation in comparison with conventional wiggler and also to have lower electron beam energy compared to conventional wiggler with the same wavelength. For the thermal effect the axial energy spread of electron beam, without any spread in the transverse velocity, is assumed. A peculiar region is found in which there is a sharp increase of the radiation amplitude. Thermal effect of the electron beam was found to be irregular in this peculiar region.
    Journal of Plasma Physics 06/2015; 81:1-12. DOI:10.1017/S0022377814001159
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plasma immersion ion implantation process is investigated in the presence of q-nonextensive electrons by using a one-dimensional fluid model. The effect of the nonextensivity parameter, q, on the plasma parameters and sheath dynamics during the implantation process is studied. The results show that the implantation dose can be enhanced in the presence of energetic electrons at the tail of the distribution function. Different parameters of plasma such as sheath thickness, ion velocity and ion density show more change at the larger values of the q-parameter. Furthermore, the results of simulation tend to what is predicted by the Maxwellian electron distribution function (q = 1).
    Journal of Plasma Physics 06/2015; 81:1-13. DOI:10.1017/S0022377814000981
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 seconds apart, each lasting approximately 0.2 seconds. The enhancements, which were about a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometer across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were caused by the presence of the aircraft in the electrified environment.
    Journal of Plasma Physics 05/2015; DOI:10.1017/S0022377815000549
  • [Show abstract] [Hide abstract]
    ABSTRACT: The behavior of waves in a one-dimensional (1D) dusty plasma lattice where the dust interacts via Yukawa and electric dipole interactions is discussed theoretically. This study is motivated by recent reports on electrorheological dusty plasmas (e.g. Ivlev et al. 2008 Phys. Rev. Lett. 100 , 095003) where the dipole interaction arises due to an external uniaxial AC electric field that distorts the Debye sphere surrounding each grain. Application to possible dusty plasma experimental parameters is discussed.
    Journal of Plasma Physics 05/2015; DOI:10.1017/S0022377815000422
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gyrokinetic simulations of electromagnetic turbulence in magnetically confined torus plasmas including tokamak and heliotron/stellarator are reviewed. Numerical simulation of turbulence in finite beta plasmas is an important task for predicting the performance of fusion reactors and a great challenge in computational science due to multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The simulation becomes further challenging in non-axisymmetric plasmas. In finite beta plasmas, magnetic perturbation appears and influences some key mechanisms of turbulent transport, which include linear instability and zonal flow production. Linear analysis shows that the ion-temperature gradient (ITG) instability, which is essentially an electrostatic instability, is unstable at low beta and its growth rate is reduced by magnetic field line bending at finite beta. On the other hand, the kinetic ballooning mode (KBM), which is an electromagnetic instability, is destabilized at high beta. In addition, trapped electron modes (TEMs), electron temperature gradient (ETG) modes, and micro-tearing modes (MTMs) can be destabilized. These instabilities are classified into two categories: ballooning parity and tearing parity modes. These parities are mixed by nonlinear interactions, so that, for instance, the ITG mode excites tearing parity modes. In the nonlinear evolution, the zonal flow shear acts to regulate the ITG driven turbulence at low beta. On the other hand, at finite beta, interplay between the turbulence and zonal flows becomes complicated because the production of zonal flow is influenced by the finite beta effects. When the zonal flows are too weak, turbulence continues to grow beyond a physically relevant level of saturation in finite-beta tokamaks. Nonlinear mode coupling to stable modes can play a role in the saturation of finite beta ITG mode and KBM. Since there is a quadratic conserved quantity, evaluating nonlinear transfer of the conserved quantity from unstable modes to stable modes is useful for understanding the saturation mechanism of turbulence.
    Journal of Plasma Physics 04/2015; 81(02). DOI:10.1017/S0022377815000100
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the key processes occurring in the tokamak scrape-off layer (SOL) is becoming of the outmost importance while we enter the ITER era and we move towards the conception of future fusion reactors. By controlling the heat exhaust, by playing an important role in determining the overall plasma confinement, and by regulating the impurity level in tokamak core, the dynamics of the fusion fuel in the SOL is, in fact, related to some of the most crucial issues that the fusion program is facing today. Because of the limited diagnostic access and in view of predicting the SOL dynamics in future devices, simulations are becoming crucial to address the physics of this region. The present paper, which summarizes the lecture on SOL simulations that was given during the 7th ITER international school (August 25-29, 2014, Aix-en-Provence, France), provides a brief overview of the simulation approaches to the SOL dynamics. First, disentangling the complexity of the system, the key physics processes occurring in the SOL are described. Then, the different simulation approaches to the SOL dynamics are presented, from first-principles kinetic and fluid models, to the phenomenological analysis.
    Journal of Plasma Physics 04/2015; 81(02). DOI:10.1017/S0022377814001202
  • [Show abstract] [Hide abstract]
    ABSTRACT: A one-dimensional nonlinear theoretical analysis for the interaction of intense laser pulse with high density electron-ion-dust quantum plasma. The linearly polarized radiation propagates in the presence of a constant magnetic field applied perpendicular to both the electric vector and the direction of propagation. Dispersion of the incident radiation and generation of its harmonics are studied.
    Journal of Plasma Physics 04/2015; 81(02). DOI:10.1017/S002237781500015X
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.
    Journal of Plasma Physics 04/2015; 81(02):1-12. DOI:10.1017/S0022377815000069
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Lorentzian renormalization plasma shielding effects on the elastic electron-atom collision are investigated in generalized Lorentzian semiclassical plasmas. The eikonal analysis and the effective interaction potential are employed to obtain the eikonal scattering phase shift, differential eikonal collision cross section, and total eikonal collision cross section as functions of the collision energy, impact parameter, nonthermal renormalization parameter, and spectral index of the Lorentzian plasma. It is found that the influence of Lorentzian renormalization shielding suppresses the eikonal scattering phase shift and, however, enhances the eikonal collision cross section in Lorentzian semiclassical plasmas. Additionally, the energy dependence on the total collision cross section in nonthermal plasmas is found to be more significant than that in thermal plasmas.
    Journal of Plasma Physics 04/2015; 81(02):1-11. DOI:10.1017/S0022377814001317
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nonlinear propagation of dust ion-acoustic (DIA) waves in a unmagnetized collisionless degenerate dense plasma (containing degenerate electron and positron, and classical ion fluids) has been theoretically investigated. The K-dV equation has been derived by employing the reductive perturbation method and by taking into account the effect of different plasma parameters in plasma fluid. The stationary solitary wave solution of K-dV equation is obtained, and numerically analyzed to identify the basic properties of DIA solitary structures. It has been shown that depending on plasma parametric values, the degenerate plasma under consideration supports compressive or rarefactive solitary structures. It has been also found that the effect of pressures on electrons, ions, and positrons significantly modify the basic features of solitary waves that are found to exist in such a plasma system. The relevance of our results in astrophysical objects such as white dwarfs and neutron stars, which are of scientific interest, is discussed briefly.
    Journal of Plasma Physics 03/2015; 81:1-11. DOI:10.1017/S0022377813000032
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new equation for the kinetics of nonlinear conversion of Langmuir waves to electromagnetic waves is developed. Based on this, the former vision of Langmuir turbulence energy thermalization via stochastic plasma electron acceleration (Erofeev 2010 J. Fusion Energy 29, 337) is adapted to weakly turbulent plasmas in which this three-wave process occurs. Respective analysis of wave energy dissipation is extended to account for previously unrecognized terms in the kinetics of plasma electrons. It is stated that, cumulatively, these terms do not lead to substantial changes in the picture of Langmuir turbulence dissipation in the corresponding nonlinear plasma
    Journal of Plasma Physics 03/2015; 81(3):905810322. DOI:10.1017/S0022377815000240