# Journal of Mathematical Physics Impact Factor & Information

## Journal description

Journal of Mathematical Physics is published monthly by the American Institute of Physics. Its purpose is the publication of papers in mathematical physics ñ that is, the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories. The mathematics should be written in a manner that is understandable to theoretical physicists. Occasionally, reviews of mathematical subjects relevant to physics and special issues combining papers on a topic of current interest may be published.

## Current impact factor: 1.24

## Impact Factor Rankings

2015 Impact Factor | Available summer 2016 |
---|---|

2014 Impact Factor | 1.243 |

2013 Impact Factor | 1.176 |

2012 Impact Factor | 1.296 |

2011 Impact Factor | 1.291 |

2010 Impact Factor | 1.291 |

2009 Impact Factor | 1.318 |

2008 Impact Factor | 1.085 |

2007 Impact Factor | 1.137 |

2006 Impact Factor | 1.018 |

2005 Impact Factor | 1.192 |

2004 Impact Factor | 1.43 |

2003 Impact Factor | 1.481 |

2002 Impact Factor | 1.387 |

2001 Impact Factor | 1.151 |

2000 Impact Factor | 1.008 |

1999 Impact Factor | 0.976 |

1998 Impact Factor | 1.019 |

1997 Impact Factor | 1.102 |

## Impact factor over time

## Additional details

5-year impact | 1.16 |
---|---|

Cited half-life | >10.0 |

Immediacy index | 0.32 |

Eigenfactor | 0.03 |

Article influence | 0.66 |

Website | Journal of Mathematical Physics website |

Other titles | Journal of mathematical physics |

ISSN | 0022-2488 |

OCLC | 1800258 |

Material type | Periodical, Internet resource |

Document type | Journal / Magazine / Newspaper, Internet Resource |

## Publisher details

- Pre-print
- Author can archive a pre-print version

- Post-print
- Author can archive a post-print version

- Conditions
- Author's post-print on free e-print servers or arXiv
- Publishers version/PDF may be used on author's personal website, institutional website or institutional repository
- Must link to publisher version or journal home page
- Publisher copyright and source must be acknowledged with set statement (see policy)
- NIH-funded articles are automatically deposited with PubMed Central with open access after 12 months
- For Medical Physics see AAPM policy
- This policy does not apply to Physics Today
- Publisher last contacted on 27/09/2013
- Publisher last reviewed on 13/04/2015

- Classificationgreen

## Publications in this journal

- Journal of Mathematical Physics 01/2016; 57(1):015207. DOI:10.1063/1.4935072
- Journal of Mathematical Physics 11/2015; 56(11). DOI:10.1063/1.4936146
- Journal of Mathematical Physics 11/2015; 56(11):112201. DOI:10.1063/1.4935852
- Journal of Mathematical Physics 11/2015; 56(11):113509. DOI:10.1063/1.4935936
- Journal of Mathematical Physics 11/2015; 56(11):113510. DOI:10.1063/1.4936076
- Journal of Mathematical Physics 11/2015; 56(11):113506. DOI:10.1063/1.4935548
- Journal of Mathematical Physics 11/2015; 56(11):113508. DOI:10.1063/1.4935935
- [Show abstract] [Hide abstract]

**ABSTRACT:**The main aim of this paper is to provide new examples of braided T-categories in the sense of Turaev [Arabian J. Sci. Eng., Sect. C 33(2C), 483-503 (2008)]. For this purpose, we first introduce a class of new twisted Yetter-Drinfeld modules categories. Then, we construct a new braided T-category, generalizing the main constructions by Panaite and Staic [Isr. J. Math. 158, 349-366 (2007)]. Finally, we show that the new braided T-category in some conditions coincides with the representations of a certain Hom-Hopf group-coalgebra that we construct.Journal of Mathematical Physics 11/2015; 56(11):112302. DOI:10.1063/1.4935527 - Journal of Mathematical Physics 11/2015; 56(11):114101. DOI:10.1063/1.4936075
- Journal of Mathematical Physics 11/2015; 56(11):111701. DOI:10.1063/1.4935164
- Journal of Mathematical Physics 11/2015; 56(11):113505. DOI:10.1063/1.4935544
- Journal of Mathematical Physics 11/2015; 56(11):111706. DOI:10.1063/1.4935652
- [Show abstract] [Hide abstract]

**ABSTRACT:**Majid developed in [S. Majid, Math. Proc. Cambridge Philos. Soc. 125, 151-192 (1999)] the double-bosonization theory to construct Uq(g) and expected to generate inductively not just a line but a tree of quantum groups starting from a node. In this paper, the authors confirm Majid's first expectation (see p. 178 [S. Majid, Math. Proc. Cambridge Philos. Soc. 125, 151-192 (1999)]) through giving and verifying the full details of the inductive constructions ofUq(g) for the classical types, i.e., the ABCD series. Some examples in low ranks are given to elucidate that any quantum group of classical type can be constructed from the node corresponding to Uq(sl2).Journal of Mathematical Physics 11/2015; 56(11):111702. DOI:10.1063/1.4935205 - Journal of Mathematical Physics 11/2015; 56(11):111504. DOI:10.1063/1.4935472

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.