Journal of Clinical Investigation Impact Factor & Information

Publisher: American Society for Clinical Investigation, American Society for Clinical Investigation

Journal description

The Journal of Clinical Investigation has a respected history as a vital publication for the physician and scientist alike. Since 1924, the JCI has published research that examines the basic science behind clinical presentation. The JCI continues to offer expanded commentary on published articles and series focused on critical topics in emerging areas of biomedicine.

Current impact factor: 13.22

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 13.215
2013 Impact Factor 13.765
2012 Impact Factor 12.812
2011 Impact Factor 13.069
2010 Impact Factor 14.152
2009 Impact Factor 15.387
2008 Impact Factor 16.559
2007 Impact Factor 16.915
2006 Impact Factor 15.754
2005 Impact Factor 15.053
2004 Impact Factor 14.204
2003 Impact Factor 14.307
2002 Impact Factor 14.051
2001 Impact Factor 14.118
2000 Impact Factor 12.015
1999 Impact Factor 10.921
1998 Impact Factor 9.315
1997 Impact Factor 9.667
1996 Impact Factor 9.486
1995 Impact Factor 8.788
1994 Impact Factor 8.467
1993 Impact Factor 8.519
1992 Impact Factor 8.389

Impact factor over time

Impact factor

Additional details

5-year impact 14.05
Cited half-life >10.0
Immediacy index 2.50
Eigenfactor 0.19
Article influence 6.11
Website Journal of Clinical Investigation website
ISSN 0021-9738
OCLC 55055897
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

American Society for Clinical Investigation

  • Pre-print
    • Author cannot archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors personal websites, institutional repositories and funding-body repositories
    • Published source must be acknowledged
    • Please use publisher PDF
    • Cannot appear before publication
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI82534
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increased sodium influx via incomplete inactivation of the major cardiac sodium channel NaV1.5 is correlated with an increased incidence of atrial fibrillation (AF) in humans. Here, we sought to determine whether increased sodium entry is sufficient to cause the structural and electrophysiological perturbations that are required to initiate and sustain AF. We used mice expressing a human NaV1.5 variant with a mutation in the anesthetic-binding site (F1759A-NaV1.5) and demonstrated that incomplete Na+ channel inactivation is sufficient to drive structural alterations, including atrial and ventricular enlargement, myofibril disarray, fibrosis and mitochondrial injury, and electrophysiological dysfunctions that together lead to spontaneous and prolonged episodes of AF in these mice. Using this model, we determined that the increase in a persistent sodium current causes heterogeneously prolonged action potential duration and rotors, as well as wave and wavelets in the atria, and thereby mimics mechanistic theories that have been proposed for AF in humans. Acute inhibition of the sodium-calcium exchanger, which targets the downstream effects of enhanced sodium entry, markedly reduced the burden of AF and ventricular arrhythmias in this model, suggesting a potential therapeutic approach for AF. Together, our results indicate that these mice will be important for assessing the cellular mechanisms and potential effectiveness of antiarrhythmic therapies.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI84669
  • [Show abstract] [Hide abstract]
    ABSTRACT: The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI82897
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance-guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma-bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation-treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI83312
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conventional wisdom holds that methylation of RTKs should be restricted to intracellular sites. Alterations - such as deletion, mutation, and proteolytic cleavage events - to the extracellular ligand binding and dimer interface domains of the EGFR can induce EGFR dimer formation, leading to aberrant receptor activation and oncogenic activity. Recently, the extracellular domain of EGFR was also shown to be methylated, suggesting that posttranslational protein methylation events directed to the extracellular dimer interface provide another mechanism to regulate the EGFR activation state by modulating receptor dimerization. Critically, these methylation events abrogate response to conformation-specific therapeutic antibodies such as cetuximab. In this issue of the JCI, Liao et al. investigate the role of protein arginine methyltransferase I (PRMT1) in regulating EGFR function in colorectal cancer. The authors provide evidence that methylation of R198 and R200 within the dimer interface enhances growth factor ligand binding and cetuximab resistance through induction and stabilization of the active EGFR dimer conformation. Delineation of these and other subtleties involved in oncogenic RTK activation and their response to targeted therapies should facilitate the development of improved antibody-based treatments.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI85001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hirschsprung's disease (HSCR) is a severe congenital anomaly of the enteric nervous system (ENS) characterized by functional intestinal obstruction due to a lack of intrinsic innervation in the distal bowel. Distal innervation deficiency results from incomplete colonization of the bowel by enteric neural crest cells (eNCCs), the ENS precursors. Here, we report the generation of a mouse model for HSCR - named Holstein - that contains an untargeted transgenic insertion upstream of the collagen-6α4 (Col6a4) gene. This insertion induces eNCC-specific upregulation of Col6a4 expression that increases total collagen VI protein levels in the extracellular matrix (ECM) surrounding both the developing and the postnatal ENS. Increased collagen VI levels during development mainly result in slower migration of eNCCs. This appears to be due to the fact that collagen VI is a poor substratum for supporting eNCC migration and can even interfere with the migration-promoting effects of fibronectin. Importantly, for a majority of patients in a HSCR cohort, the myenteric ganglia from the ganglionated region are also specifically surrounded by abundant collagen VI microfibrils, an outcome accentuated by Down syndrome. Collectively, our data thus unveil a clinically relevant pathogenic mechanism for HSCR that involves cell-autonomous changes in ECM composition surrounding eNCCs. Moreover, as COL6A1 and COL6A2 are on human Chr.21q, this mechanism is highly relevant to the predisposition of patients with Down syndrome to HSCR.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI83178
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI82735
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hirschsprung's disease (HSCR) causes functional intestinal obstruction due to the absence of the enteric nervous system (ENS) in the distal bowel and is usually diagnosed shortly after birth or during childhood. While several genetic and nongenetic factors have been linked to HSCR, the underlying mechanisms that prevent ENS precursors from colonizing distal bowel during fetal development are not completely understood in many affected children. In this issue of the JCI, Soret and colleagues identify a new mechanism that causes HSCR-like disease in mice and involves deposition of excess collagen VI in the intestine by migrating ENS precursors as they colonize fetal bowel. Remarkably, their findings may explain some of the so-called "missing heritability" of HSCR and suggest a mechanism for increased HSCR incidence in children with Down syndrome (trisomy 21).
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI85003
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of glucose to stimulate insulin secretion from the pancreatic islets of Langerhans is enhanced by the intestinal hormone glucagon-like peptide 1 (GLP-1), which is secreted from the gut in response to nutrient ingestion. This action, called the incretin effect, accounts for as much as half of the postprandial insulin response and is exploited therapeutically for diabetes treatment through the use of incretin mimetic drugs and inhibitors of dipeptidyl peptidase 4, which degrade GLP-1. Despite a prominent role for incretin mimetics in diabetes treatment, several key questions remain about GLP-1-induced insulin secretion. Most studies have examined the effects of GLP-1 at concentrations several orders of magnitude higher than those found in vivo; therefore, one might question the physiological (and perhaps even pharmacological) relevance of pathways identified in these studies and whether other important mechanisms might have been obscured. In this issue of the JCI, Shigeto and colleagues demonstrate that physiological GLP-1 does indeed amplify the insulin secretory response. Intriguingly, while much of this response is PKA dependent, as might be expected, the use of picomolar GLP-1 reveals a new and important mechanism that contributes to GLP-1-induced insulin secretion.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI85004
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid-induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI82204
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muscular dystrophies are monogenetic diseases that are often characterized by the degeneration of both cardiac and skeletal muscle. Gene therapy to correct the mutated gene has shown promise in both animal models and clinical trials; however, current gene delivery strategies are limited to the introduction of the corrected gene into only one tissue. Strategies to target multiple striated muscle types would provide a much-needed improvement for the treatment of muscular dystrophies. In this issue of the JCI, Quattrocelli and colleagues demonstrate that induced pluripotent stem cells (iPSCs) with a myogenic propensity are able to engraft into both cardiac and skeletal muscles. The authors also identified a novel pool of mesodermal iPSC-derived progenitors (MiPs). Moreover, the authors show that these MiPs are amenable to gene correction and can restore function in murine dystrophic models. Together, the results of this study provide an important advance in improving gene delivery to treat patients with muscular dystrophy.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI85002
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of the gene encoding four-and-a-half LIM domain 1 (FHL1) are the causative factor of several X-linked hereditary myopathies that are collectively termed FHL1-related myopathies. These disorders are characterized by severe muscle dysfunction and damage. Here, we have shown that patients with idiopathic inflammatory myopathies (IIMs) develop autoimmunity to FHL1, which is a muscle-specific protein. Anti-FHL1 autoantibodies were detected in 25% of IIM patients, while patients with other autoimmune diseases or muscular dystrophies were largely anti-FHL1 negative. Anti-FHL1 reactivity was predictive for muscle atrophy, dysphagia, pronounced muscle fiber damage, and vasculitis. FHL1 showed an altered expression pattern, with focal accumulation in the muscle fibers of autoantibody-positive patients compared with a homogeneous expression in anti-FHL1-negative patients and healthy controls. We determined that FHL1 is a target of the cytotoxic protease granzyme B, indicating that the generation of FHL1 fragments may initiate FHL1 autoimmunity. Moreover, immunization of myositis-prone mice with FHL1 aggravated muscle weakness and increased mortality, suggesting a direct link between anti-FHL1 responses and muscle damage. Together, our findings provide evidence that FHL1 may be involved in the pathogenesis not only of genetic FHL1-related myopathies but also of autoimmune IIM. Importantly, these results indicate that anti-FHL1 autoantibodies in peripheral blood have promising potential as a biomarker to identify a subset of severe IIM.
    Journal of Clinical Investigation 11/2015; DOI:10.1172/JCI81031