Journal of Biomechanics (J BIOMECH )

Publisher: University of Michigan. Highway Safety Research Institute; American Society of Biomechanics; European Society of Biomechanics; International Society of Biomechanics; Japanese Society for Clinical Biomechanics and Related Research; All authors, Elsevier


The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted. Substantially new techniques not testing some explicit hypothesis or reporting original observations may be considered for Technical Notes. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: Fundamental Topics - Dynamics of the musculoskeletal system, mechanics of hard and soft tissues, mechanics of muscles, mechanics of bone remodelling, mechanics of implant-tissue interfaces, mechanisms of cells. Cardiovascular and Respiratory Biomechanics - Mechanics of blood flow, air flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. Dental Biomechanics - Design and analysis of dental prostheses, mechanics of chewing. Injury Biomechanics - Mechanics of impact, dynamics of man-machine interaction. Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints. Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. Sports Biomechanics - Mechanical analyses of sports performance. Cell Biomechanics - Relationship of mechanical environment to cells and tissue responses.The journal is affiliated to the American Society of Biomechanics, the International Society of Biomechanics. and the European Society of Biomechanics. The journal is featured in 'Biomechanics World Wide'.

  • Impact factor
    Show impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Journal of Biomechanics website
  • Other titles
    Journal of biomechanics
  • ISSN
  • OCLC
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Voluntary deposit by author of pre-print allowed on Institutions open scholarly website and pre-print servers
    • Voluntary deposit by author of authors post-print allowed on institutions open scholarly website including Institutional Repository
    • Deposit due to Funding Body, Institutional and Governmental mandate only allowed where separate agreement between repository and publisher exists
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PMC after 12 months
    • Authors who are required to deposit in subject repositories may also use Sponsorship Option
    • Pre-print can not be deposited for The Lancet
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: As 3-dimensional (3D) motion-capture for clinical gait analysis continues to evolve, new methods must be developed to improve the detection of gait cycle events based on kinematic data. Recently, the application of principal component analysis (PCA) to gait data has shown promise in detecting important biomechanical features. Therefore, the purpose of this study was to define a new foot strike detection method for a continuum of striking techniques, by applying PCA to joint angle waveforms. In accordance with Newtonian mechanics, it was hypothesized that transient features in the sagittal-plane accelerations of the lower extremity would be linked with the impulsive application of force to the foot at foot strike. Kinematic and kinetic data from treadmill running were selected for 154 subjects, from a database of gait biomechanics. Ankle, knee and hip sagittal plane angular acceleration kinematic curves were chained together to form a row input to a PCA matrix. A linear polynomial was calculated based on PCA scores, and a 10-fold cross-validation was performed to evaluate prediction accuracy against gold-standard foot strike as determined by a 10N rise in the vertical ground reaction force. Results show 89-94% of all predicted foot strikes were within 4 frames (20ms) of the gold standard with the largest error being 28ms. It is concluded that this new foot strike detection is an improvement on existing methods and can be applied regardless of whether the runner exhibits a rearfoot, midfoot, or forefoot strike pattern.
    Journal of Biomechanics 07/2014;
  • Journal of Biomechanics 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accelerometers are increasingly used tools for gait analysis, but there remains a lack of research on their application to running and their ability to classify running patterns. The purpose of this study was to conduct an exploratory examination into the capability of a tri-axial accelerometer to classify runners of different training backgrounds and experience levels, according to their 3-dimensional (3D) accelerometer data patterns. Training background was examined with 14 competitive soccer players and 12 experienced marathon runners, and experience level was examined with 16 first-time and the same 12 experienced marathon runners. Discrete variables were extracted from 3D accelerations during a short run using root mean square, wavelet transformation, and autocorrelation procedures. A principal component analysis (PCA) was conducted on all variables, including gait speed to account for covariance. Eight PCs were retained, explaining 88% of the variance in the data. A stepwise discriminant analysis of PCs was used to determine the binary classification accuracy for training background and experience level, with and without the PC of Speed. With Speed, the accelerometer correctly classified 96% of runners for both training background and experience level. Without Speed, the accelerometer correctly classified 85% of runners based on training background, but only 68% based on experience level. These findings suggest that the accelerometer is effective in classifying athletes of different training backgrounds, but is less effective for classifying runners of different experience levels where gait speed is the primary discriminator.
    Journal of Biomechanics 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fixed position of force plates has led researchers to pursue alternative methods of determining centre of pressure (CoP) location. To date, errors reported using alternative methods to the force plate during dynamic tasks have been high. The aim of this study was to investigate the accuracy of a motion analysis marker-based system to determine CoP during a two-legged hopping task. Five markers were attached to the left and right feet of eight healthy adults (5 females, 3 males, age: 25.0±2.8 years, height: 1.75±0.07 m, mass: 71.3±11.3 kg). Multivariate forward stepwise and forced entry linear regression was used with data from five participants to determine CoP position during quiet standing and hopping task at various frequencies. Maximum standard error of the estimate of CoP position was 12 mm in the anteroposterior direction and 8 mm in the mediolateral. Cross-validation was performed using the remaining three participants. Maximum root mean square difference between the force plate and marker method was 14 mm for mediolateral CoP and 20 mm for anteroposterior CoP during 1.5 Hz hopping. Differences reduced to a maximum of 7 mm (mediolateral) and 14 mm (anteroposterior) for the other frequencies. The smallest difference in calculated sagittal plane ankle moment and timing of maximum moment was during 3.0 Hz hopping, and largest at 1.5 Hz. Results indicate the marker-based method of determining CoP may be a suitable alternative to a force plate to determine CoP position during a two-legged hopping task at frequencies greater than 1.5 Hz.
    Journal of Biomechanics 04/2014; 47:1904-1908.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4◦ wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.
    Journal of Biomechanics 01/2014;
  • Journal of Biomechanics 01/2014;
  • Journal of Biomechanics 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Robotic biomechanics is a powerful tool for further developing our understanding of biological joints, tissues and their repair. Both velocity-based and hybrid force control methods have been applied to biomechanics but the complex and non-linear properties of joints has limited these to slow or stepwise loading, which may not capture the real-time behaviour of joints. This paper presents a novel force control scheme combining stiffness and velocity based methods aimed at achieving six degree of freedom unconstrained force control at physiological loading rates.
    Journal of Biomechanics 01/2014; In-Press.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lumbar interbody fusion cages are commonly used to treat painful spinal degeneration and instability by achieving bony fusion. Many different cage designs exist, however the effect of cage morphology and material properties on the fusion process remains largely unknown. This finite element model study aims to investigate the influence of different cage designs on bone fusion using two mechano-regulation algorithms of tissue formation. It could be observed that different cages play a distinct key role in the mechanical conditions within the fusion region and therefore regulate the time course of the fusion process.
    Journal of Biomechanics 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Background: CFD has been used to assess intra-aneurysmal hemodynamics. Nevertheless, the lack of patient-specific flow information has triggered the possibility of implementing a wide variety of physiological flow conditions. Due to these uncertainties in the patient flow conditions, the normalization of the intra-aneurysmal hemodynamics is generally conducted. Purpose: To investigate how intra-aneurysmal and arterial hemodynamics changes over time when different physiological flow conditions are imposed. Material and Method: Eleven image-based aneurysm models were used in this study. CFD simulations were performed under pulsatile flows. Velocity magnitude and wall shear stress (WSS) were calculated during one cardiac cycle. Results: Maximum hemodynamic condition does not necessarily occurred at peak systole. The shifted time from peak systole to the time where the maximum hemodynamic condition occurs inside the aneurysm depends on the aneurysm size, flow rate, surrounding vasculature and the stabilities of flow patterns. Larger shifted times were observed with increasing aneurysm size as well as with reducing the flow rate. Moreover, the maximum hemodynamic condition can occur earlier than peak systole if flow patterns at parent artery change. Differences between peak systolic WSS and maximum WSS can be up to 65%. Moreover, the velocity magnitude and WSS depend on the selected segment of the parent artery, with relatively larger variability near peak systole than the rest of the cardiac cycle. More than 50% of differences were found between two arterial segments arbitrary selected for a given flow rate. Conclusions: Our results indicate that if the highest intra-aneurysmal stress is calculated, then it is preferable to use the time instance where the maximum WSS occurred instead of the peak systolic WSS. Additionally, the normalization of intra-aneurysmal hemodynamics should be done with variables that do not depend of any arbitrary segment of the parent artery.
    Journal of Biomechanics 01/2014;

Related Journals