Communications in Mathematical Physics (COMMUN MATH PHYS)

Publisher: Springer Verlag

Journal description

Subjects: Quantum physics and differential geometry; Flow equations, nonlinear PDE of mathematical physics; String theory, nonperturbative field theory and related topics; Field theory, mechanics and condensed matter; nonequilibrium and dynamical systems; General relativity, mathematical aspects of M/string theory, applications of differential geometry to physics; Field theory, constructive methods; statistical mechanics; Algebraic quantum field theory and related issues of operator algebras; Turbulence, disordered systems, and rigorous studies of field theory; Nonequilibrium statistical mechanics; Algebraic geometry in physics, mathematical aspects of string theory; Quantum information theory; Quantum chaos; Schrödinger operators and atomic physics; Statistical physics; Classical and quantum integrable systems, conformal field theory and related topics; Quantum dynamics and nonequilibrium statistical mechanics.

Current impact factor: 2.09

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.086
2013 Impact Factor 1.901
2012 Impact Factor 1.971
2011 Impact Factor 1.941
2010 Impact Factor 2
2009 Impact Factor 2.067
2008 Impact Factor 2.075
2007 Impact Factor 2.07
2006 Impact Factor 2.077
2005 Impact Factor 2.007
2004 Impact Factor 1.741
2003 Impact Factor 1.65
2002 Impact Factor 1.851
2001 Impact Factor 1.729
2000 Impact Factor 1.721
1999 Impact Factor 1.537
1998 Impact Factor 1.737
1997 Impact Factor 1.651
1996 Impact Factor 1.718
1995 Impact Factor 1.936
1994 Impact Factor 2.282
1993 Impact Factor 2.055
1992 Impact Factor 1.942

Impact factor over time

Impact factor

Additional details

5-year impact 2.08
Cited half-life >10.0
Immediacy index 0.92
Eigenfactor 0.04
Article influence 2.01
Website Communications in Mathematical Physics website
Other titles Communications in mathematical physics
ISSN 0010-3616
OCLC 1564493
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: For any toric Calabi-Yau 3-orbifold with transverse A-singularities, we prove the Gromov-Witten/Donaldson-Thomas correspondence and Ruan's crepant resolution conjecture in all genera.
    Communications in Mathematical Physics 12/2015; 340(2). DOI:10.1007/s00220-015-2438-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we consider a finite dimensional Hamiltonian system that contains as a special case an exact discretization of the Lax equation for shock clustering. We characterize the generic coadjoint orbits of the underlying Lie group and establish the Liouville integrability of the system on such orbits. We also solve the Hamiltonian equation explicitly via Riemann–Hilbert factorization problems.
    Communications in Mathematical Physics 12/2015; 340(3). DOI:10.1007/s00220-015-2456-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: We prove the existence of a sequence of nondegenerate, in the sense of Duyckaerts–Kenig–Merle [9], nodal nonradial solutions to the critical Yamabe problem$$-\Delta Q= |Q|^{\frac{2}{n-2}} Q, \quad Q \in {\mathcal D}^{1,2}(\mathbb{R}^n).$$-ΔQ=|Q|2n-2Q,Q∈D1,2(Rn).This is the first example in the literature of nondegeneracy for nodal nonradial solutions of nonlinear elliptic equations and it is also the only nontrivial example for which the result of Duyckaerts–Kenig–Merle [9] applies.
    Communications in Mathematical Physics 12/2015; 340(3). DOI:10.1007/s00220-015-2462-1

  • Communications in Mathematical Physics 11/2015; DOI:10.1007/s00220-015-2502-x

  • Communications in Mathematical Physics 11/2015; DOI:10.1007/s00220-015-2519-1

  • Communications in Mathematical Physics 11/2015; DOI:10.1007/s00220-015-2508-4

  • Communications in Mathematical Physics 11/2015; DOI:10.1007/s00220-015-2476-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Rumanov (J Math Phys 56:013508, 2015), we found explicit Lax pairs for the soft edge of beta ensembles with even integer values of (Formula presented.). Using this general result, the case (Formula presented.) is further considered here. This is the smallest even (Formula presented.), when the corresponding Lax pair and its relation to Painlevé II (PII) have not been known before, unlike cases (Formula presented.) and 4. It turns out that again everything can be expressed in terms of the Hastings–McLeod solution of PII. In particular, a second order nonlinear ordinary differential equation (ODE) for the logarithmic derivative of Tracy–Widom distribution for (Formula presented.) involving the PII function in the coefficients is found, which allows one to compute asymptotics for the distribution function. The ODE is a consequence of a linear system of three ODEs for which the local singularity analysis yields series solutions with exponents in the set 4/3, 1/3 and −2/3.
    Communications in Mathematical Physics 11/2015; DOI:10.1007/s00220-015-2487-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: We consider a magnetic Schrödinger operator with magnetic field concentrated at one point (the pole) of a domain and half integer circulation, and we focus on the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic field vanishes almost everywhere, it is well known that it affects the operator at the spectral level (the Aharonov–Bohm effect, Phys Rev (2) 115:485–491, 1959). Moreover, the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365–1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361–1403, 2010) show a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE 7(6):1365–1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361–1403, 2010), we analyze the relation between the variation of the eigenvalue and the nodal structure of the associated eigenfunctions. We deal with planar domains with Dirichlet boundary conditions and we focus on the case when the singular pole approaches the boundary of the domain: then, the operator loses its singular character and the k-th magnetic eigenvalue converges to that of the standard Laplacian. We can predict both the rate of convergence and whether the convergence happens from above or from below, in relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The proof relies on the variational characterization of eigenvalues, together with a detailed asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula for magnetic eigenfunctions and on the blow-up technique.
    Communications in Mathematical Physics 11/2015; 339(3). DOI:10.1007/s00220-015-2423-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nonlocal geometric variational problem derived from the Ohta–Kawasaki diblock copolymer theory is an inhibitory system with self-organizing properties. The free energy, defined on subsets of a prescribed measure in a domain, is a sum of a local perimeter functional and a nonlocal energy given by the Green’s function of Poisson’s equation on the domain with the Neumann boundary condition. The system has the property of preventing a disc from drifting towards the domain boundary. This raises the question of whether a stationary set may have its interface touch the domain boundary. It is proved that a small, perturbed half disc exists as a stable stationary set, where the circular part of its boundary is inside the domain, as the interface, and the almost flat part of its boundary coincides with part of the domain boundary. The location of the half disc depends on two quantities: the curvature of the domain boundary, and a remnant of the Green’s function after one removes the fundamental solution and a reflection of the fundamental solution. This reflection is defined with respect to any sufficiently smooth domain boundary. It is an interesting new concept that generalizes the familiar notions of mirror image and circle inversion. When the nonlocal energy is weighted less against the local energy, the stationary half disc sits near a maximum of the curvature; when the nonlocal energy is weighted more, the half disc appears near a minimum of the remnant function. There is also an intermediate case where the half disc is near a minimum of a combination of the curvature and the remnant function.
    Communications in Mathematical Physics 11/2015; 340(1). DOI:10.1007/s00220-015-2451-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the asymptotically locally hyperbolic setting it is possible to have metrics with scalar curvature ≥ −6 and negative mass when the genus of the conformal boundary at infinity is positive. Using inverse mean curvature flow, we prove a Penrose inequality for these negative mass metrics. The motivation comes from a previous result of P. Chruściel and W. Simon, which states that the Penrose inequality we prove implies a static uniqueness theorem for negative mass Kottler metrics.
    Communications in Mathematical Physics 10/2015; 339(2). DOI:10.1007/s00220-015-2421-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: We provide a classification of type AII topological quantum systems in dimension d = 1, 2, 3, 4. Our analysis is based on the construction of a topological invariant, the FKMM-invariant, which completely classifies “Quaternionic" vector bundles (a.k.a. “symplectic" vector bundles) in dimension \({d\leqslant 3}\). This invariant takes value in a proper equivariant cohomology theory and, in the case of examples of physical interest, it reproduces the familiar Fu–Kane–Mele index. In the case d = 4 the classification requires a combined use of the FKMM-invariant and the second Chern class. Among the other things, we prove that the FKMM-invariant is a bona fide characteristic class for the category of “Quaternionic" vector bundles in the sense that it can be realized as the pullback of a universal topological invariant.
    Communications in Mathematical Physics 10/2015; 339(1). DOI:10.1007/s00220-015-2390-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Maxwell-Stefan equations for the molar fluxes, supplemented by the incompressible Navier-Stokes equations governing the fluid velocity dynamics, are analyzed in bounded domains with no-flux boundary conditions. The system models the dynamics of a multicomponent gaseous mixture under isothermal conditions. The global-in-time existence of bounded weak solutions to the strongly coupled model and their exponential decay to the homogeneous steady state are proved. The mathematical difficulties are due to the singular Maxwell-Stefan diffusion matrix, the cross-diffusion terms, and the different molar masses of the fluid components. The key idea of the proof is the use of a new entropy functional and entropy variables, which allows for a proof of positive lower and upper bounds of the mass densities without the use of a maximum principle.
    Communications in Mathematical Physics 09/2015; 340(2). DOI:10.1007/s00220-015-2472-z
  • Ken Abe ·
    [Show abstract] [Hide abstract]
    ABSTRACT: We establish a blow-up rate of the Navier-Stokes equations subject to the non-slip boundary condition for a certain class of domains including bounded and exterior domains.
    Communications in Mathematical Physics 09/2015; 338(2). DOI:10.1007/s00220-015-2349-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: We interpret certain Seiberg-like dualities of two-dimensional N = (2,2) quiver gauge theories with unitary groups as cluster mutations in cluster algebras, originally formulated by Fomin and Zelevinsky. In particular, we show how the complexified Fayet-Iliopoulos parameters of the gauge group factors transform under those dualities and observe that they are in fact related to the dual cluster variables of cluster algebras. This implies that there is an underlying cluster algebra structure in the quantum Kähler moduli space of manifolds constructed from the corresponding Kähler quotients. We study the S2 partition function of the gauge theories, showing that it is invariant under dualities/mutations, up to an overall normalization factor, whose physical origin and consequences we spell out in detail. We also present similar dualities in N = (2,2)* quiver gauge theories, which are related to dualities of quantum integrable spin chains.
    Communications in Mathematical Physics 08/2015; 340(1). DOI:10.1007/s00220-015-2452-3