CHEMICAL & PHARMACEUTICAL BULLETIN (CHEM PHARM BULL )

Publisher: Nihon Yakugakkai

Description

This journal covers physical and inorganic chemistry, organic chemistry including natural products chemistry, medicinal chemistry, analytical chemistry, pharmacognosy and physical pharmacy.

  • Impact factor
    1.56
    Hide impact factor history
     
    Impact factor
  • 5-year impact
    1.60
  • Cited half-life
    0.00
  • Immediacy index
    0.20
  • Eigenfactor
    0.01
  • Article influence
    0.38
  • Website
    Chemical & Pharmaceutical Bulletin (Tokyo) website
  • Other titles
    Chemical and pharmaceutical bulletin, Chemical and pharmaceutical bulletin
  • ISSN
    0009-2363
  • OCLC
    6067231
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: 2H-[1,2,3]Triazolo[4,5-g]isoquinoline-4,9-diones and 2H-[1,2,3]triazolo[4,5-g]quinoline-4,9-diones were synthesized and tested for in vitro antifungal activity against pathogenic fungi. Many of those synthesized showed potent antifungal activity. Compounds 3a, 3b, 3g, and 3h completely inhibited the growth of all fungal species tested at the MIC level of 0.8~12.5 μg/mL. The results suggest that 2H-[1,2,3]triazolo[4,5-g]isoquinoline-4,9-diones could be antifungal agents.
    CHEMICAL & PHARMACEUTICAL BULLETIN 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fatty acid biosynthesis is essential for bacterial survival. β-Ketoacyl-acyl carrier protein (ACP) synthase III (FabH), is a particularly attractive antibacterial target, since it is central to the initiation of fatty acid biosynthesis. Three series of 21 cinnamaldehyde acylhydrazone derivatives, A3-A9, B3-B9, and C3-C9, were synthesized and evaluated for FabH-inhibitory activity. Compound B6 showed the most potent biological activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis (MIC values: 1.56-3.13 μg/mL) and was comparable with the positive control. Docking simulation by positioning compound B6 in the FabH structure active site was performed to explore the possible binding model.
    CHEMICAL & PHARMACEUTICAL BULLETIN 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A multivariate statistical technique was applied to clarify the causal correlation between variables in the manufacturing process and the residual stress distribution of tablets. Theophylline tablets were prepared according to a Box-Behnken design using the wet granulation method. Water amounts (X1), kneading time (X2), lubricant-mixing time (X3), and compression force (X4) were selected as design variables. The Drucker-Prager cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders. Simulation parameters, such as Young's modulus, Poisson rate, internal friction angle, plastic deformation parameters, and initial density of the powder, were measured. Multiple regression analysis demonstrated that the simulation parameters were significantly affected by process variables. The constructed DPC models were fed into the analysis using the finite element method (FEM), and the mechanical behavior of pharmaceutical powders during the tableting process was analyzed using the FEM. The results of this analysis revealed that the residual stress distribution of tablets increased with increasing X4. Moreover, an interaction between X2 and X3 also had an effect on shear and the x-axial residual stress of tablets. Bayesian network analysis revealed causal relationships between the process variables, simulation parameters, residual stress distribution, and pharmaceutical responses of tablets. These results demonstrated the potential of the FEM as a tool to help improve our understanding of the residual stress of tablets and to optimize process variables, which not only affect tablet characteristics, but also are risks of causing tableting problems.
    CHEMICAL & PHARMACEUTICAL BULLETIN 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C (PKC) is correlated with cell signaling pathways and also receives attention as a therapeutic target for cancer and Alzheimer-type dementia. The application of Förster/fluorescence resonance energy transfer (FRET) phenomena to detect binding between proteins and small molecules, for example, PKC and its ligands, underlies a fluorescence-based assay method suitable for high-throughput screening. To accelerate studies on PKC functions in processing signals using small molecules and the development of drugs that target PKC, novel methods for the assessment of the PKC binding affinity of compounds are necessary. We previously developed solvatochromic fluorophore-based methods for that assessment. In this study, a novel method for a FRET-based PKC binding assay was developed and is expected to overcome the limitations of solvatochromic fluorophores.
    CHEMICAL & PHARMACEUTICAL BULLETIN 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study a brinzolamide drug-resin ophthalmic thermosensitive in situ gelling system was developed and evaluated. Brinzolamide was combined with ion exchange resins to prolong the retention time of drugs in the eye and to reduce ocular and systemic side effects. Poloxamer F127 was used as gelling vehicle in combination with carbopol 934P, which acted as a viscosity-enhancing agent. They were prepared using the cold method. The optimized formulation exhibited a sol-gel transition at 33.2±1.1°C with pseudoplastic flow behavior. This formulation was stable and nonirritant to rabbit eyes. In vitro release studies demonstrated diffusion-controlled release of brinzolamide from the combined solutions over a period of 8 h. In vivo evaluation (the elimination of brinzolamide through tears and absorption of brinzolamide in aqueous humor) indicated that the solution combination was better able to retain the drug than commercial preparations. Thus this formulation is safe for ophthalmic use and significantly increases brinzolamide bioavailability in aqueous humor.
    CHEMICAL & PHARMACEUTICAL BULLETIN 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to design and synthesize novel γ-aminobutyric acid (GABA) derivatives with the combination of aspirin (ASA) of nerve rehabilitative pharmacophores so as to develop multifunctional drugs useful in the treatment of neurological disorders. Twenty-four novel esters and amides of 1a were synthesized, biologically evaluated for antiepileptic activity with the model of 4-aminopyridine (4-AP), and tested for their capacity of penetrating the blood-brain barrier (BBB) with HPLC. The distribution of 8a, ASA freed by 8a, 7c, and ASA freed by 7c within 24 h in brain tissue was measured. The structure-activity relationship (SAR) was established and the data of Computer Aided Drug Design (CADD) showed good results. With ED50 values of 0.3684-0.5199 mmol/kg, LD50 1.1487-1.3944 mmol/kg, and therapeutic index (TI) 2.65-3.15, compounds 8a, 3b, 4b, 6c, and 7c exhibited better antiepileptic activities in multiples of 0.3 to 2.2 against the control sodium valproate (VPA). Most importantly, 8a and 7c exhibited excellent antiepileptic activities with TI values of 3.15 and 3.12, respectively.
    CHEMICAL & PHARMACEUTICAL BULLETIN 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We synthesized oxatriquinane hexafluorophosphate bearing an ethoxycarbonylmethyl group 7 or a 2-oxopropyl group 11. Both of these organic oxonium cation compounds were obtained as stable solids. However, (1)H-NMR analysis showed that oxatriquinane 7 was present as the oxonium cation in aprotic solvent CD3CN, but was in rapid equilibrium with ring-opened bicyclic compound 8 in protic solvent CD3OD. The oxatriquinane 11 also showed similar behavior in protic solvent. Phenyl-substituted oxatriquinanes 12 and 14 were also obtained as stable solids, and showed similar properties to 7 and 11.
    CHEMICAL & PHARMACEUTICAL BULLETIN 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel potentially platelet aggregation-inhibiting 1,4-benzoxazine-3(4H)-one derivatives was designed and synthesized through Smiles rearrangement, reduction and acetylation reactions. The antiaggregatory activities of the target molecules on arterial blood samples from rabbits, expressed by IC50 values (μM), were then evaluated in vitro against ADP induced platelet aggregation. The favorable IC50 values of compound 8c (IC50 = 8.99 μM) and 8d (IC50 = 8.94 μM) indicated that these two compounds were the most potent molecules among all the synthesized compounds. A detailed molecular docking study to explore the interaction of compounds 8c and 8d with GP IIb/IIIa receptor showed that they these two compounds were docked into the active site of GPIIb/IIIa receptor. These results suggest that the 1,4-benzoxazine-3(4H)-one derivatives are promising lead compounds to develop new platelet aggregation inhibitors.
    CHEMICAL & PHARMACEUTICAL BULLETIN 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A rare hexacyclic oxindole alkaloid, speradine F (1), together with two novel tetracyclic oxindole alkaloids, speradines G (2) and H (3) , were isolated from the marine-derived fungus Aspergillus oryzae. Their structures were determined by spectroscopic methods and X-ray diffraction analysis. This study is the first report on cyclopiazonic acid (CPA)-type alkaloids with a hexacyclic skeleton.
    CHEMICAL & PHARMACEUTICAL BULLETIN 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pim kinases play a key role in the regulation of signaling pathways including proliferation, migration, and metabolism and are a potential target for cancer therapy. A series of 5-benzylidenethiazolidine-2,4-diones were synthesized as pim kinase inhibitors. The structure-activity relationships (SAR) of the analogues in inhibiting in vitro pim kinase activity as well as the proliferation of leukemia cell lines were examined. SAR studies indicated that a hydroxyl group at the 2-position of the benzene ring of 5-benzylidenethiazolidine-2,4-dione plays an important role in the inhibitory activity against all three pim kinases and replacement with a pyrazinyl group at the 5-position of the benzene ring of 5-benzylidenethiazolidine-2,4-dione improved activity significantly. The compounds exerted anti-proliferative activity against the three leukemia cell lines we tested. The most potent compound, 5i, had an EC50 value of 0.8 μM in the MV4-11 cell line. The result of kinase profiling indicated that compound 5i was highly selective for pim-kinases.
    CHEMICAL & PHARMACEUTICAL BULLETIN 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved synthetic route has been developed for the preparation of methyl 1-fluoroindan-1-carboxylate (FICA Me ester) from 1-indanone. Methyl 4-methyl-1-fluoroindan-1-carboxylate (4-Me-FICA Me ester) was also prepared following the same procedure.
    CHEMICAL & PHARMACEUTICAL BULLETIN 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.
    CHEMICAL & PHARMACEUTICAL BULLETIN 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stabilization against humidity of Limaprost (a Prostaglandin E1 derivative), which is currently marketed as Opalmon(®), was undertaken using b-cyclodextrin (β-CD). Aqueous solutions of Limaprost alfadex/dextran 40 were lyophilized with and without β-CD. Limaprost alfadex lyophilized with β-CD was more chemically stable in humid conditions than that without β-CD. Moreover, the addition of β-CD as an excipient to tablets of these lyophilized composites remarkably improved the stability of Limaprost, and Limaprost in this moisture-resistant formulation was chemically stable for 19 weeks at 30\deg;C, 75% relative humidity. Chemical analysis of Limaprost and its degradation products indicated that degradation proceeded in the inclusion form (i.e., within the CD cavity). Solid (2)H-NMR spectroscopic studies showed that β-CD constrained the molecular mobility of water in the solid state. These results suggested that the stabilization of Limaprost by β-CD was at least partly due to the restricted molecular mobility of water, which acted as a catalytic species for the degradation, and also to the protection of the five-membered ring of Limaprost from water catalytic dehydration through inclusion complex formation with β-CD.
    CHEMICAL & PHARMACEUTICAL BULLETIN 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel in vitro release test methodology for a liposome formulation was developed using a column-switching high-performance liquid chromatography (HPLC) system. Doxorubicin (DXR) liposome formulations were used as a model. A DXR liposome formulation was dispersed into a release medium, and the dispersion fluid was directly injected at predetermined time points into the column-switching HPLC system. To evaluate the release profile, this system can be used for determining the released and encapsulated DXR in the liposome formulation separately. Comparison with a conventional in vitro release test methodology by dialysis revealed that the methodology developed by column-switching HPLC had no rate-limiting process of membrane permeation of the drug (which is occasionally observed in the dialysis method). The in vitro release profiles of DXR liposome formulations were well characterized using the method developed by column-switching HPLC, and different in vitro release characteristics were revealed. The developed method did not require a large amount of sample or a complicated pretreatment. In addition, the developed column-switching HPLC system was applicable for characterization of the encapsulation profile of liposome formulations.
    CHEMICAL & PHARMACEUTICAL BULLETIN 01/2014; 62(6):538-44.
  • [Show abstract] [Hide abstract]
    ABSTRACT: 8-Hydroxyquinoline (HQ)-based compounds have recently been proposed as potential candidates for drugs for treating human immunodeficiency virus (HIV), cancer, neurodegenerative diseases (Alzheimer's and Parkinson's disease), and parasitic and bacterial infections. However, HQ itself and its derivatives might be toxic due to their intrinsic affinity for metal cations in living systems. One possible strategy for suppressing the toxicity and side effects of drugs with metal chelation properties, such as HQ, would be masking the critically important moieties with protecting groups that can be subsequently removed under specific conditions. In our previous work, we reported that HQ analogs are potent and selective inhibitors (Ki values=0.16-29 µM) of aminopeptidase from Aeromonas proteolytica (AAP) (EC 3.4.11.10), a dinuclear Zn(2+) peptidase. Based on this background information, HQ sulfonates were synthesized as prodrugs of HQ-based AAP-inhibitors that can be reactivated by photochemical cleavage of the S-O bond in the sulfonate groups. The findings indicate that HQ sulfonates containing methanesulfonyl and 2-aminoethanesulfonyl groups are essentially stable under physiological conditions and undergo photolysis to regenerate the corresponding HQ compounds that function as AAP inhibitors. This methodology could be applied to the design of similar types of Zn(2+) hydrolase inhibitors and prodrugs.
    CHEMICAL & PHARMACEUTICAL BULLETIN 01/2014; 62(7):642-8.