Biological Bulletin (BIOL BULL-US)

Publisher: Marine Biological Laboratory (Woods Hole, Mass.), Marine Biological Laboratory

Journal description

The Biological Bulletin publishes outstanding experimental research on the full range of biological topics and organisms, from the fields of Neurobiology, Behavior, Physiology, Ecology, Evolution, Development and Reproduction, Cell Biology, Biomechanics, Symbiosis, and Systematics. Published since 1897 by the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, The Biological Bulletin is one of America's oldest, peer-reviewed scientific journals. The journal is aimed at a general readership, and especially invites articles about those novel phenomena and contexts characteristic of intersecting fields.

Current impact factor: 1.64

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.638
2013 Impact Factor 1.567
2012 Impact Factor 1.234
2011 Impact Factor 1.698
2010 Impact Factor 2.475
2009 Impact Factor 1.942
2008 Impact Factor 1.949
2007 Impact Factor 1.71
2006 Impact Factor 1.649
2005 Impact Factor 1.321
2004 Impact Factor 0.995
2003 Impact Factor 1.15
2002 Impact Factor 1.243
2001 Impact Factor 1.071
2000 Impact Factor 0.895
1999 Impact Factor 0.925
1998 Impact Factor 0.766
1997 Impact Factor 0.945

Impact factor over time

Impact factor

Additional details

5-year impact 1.97
Cited half-life >10.0
Immediacy index 0.49
Eigenfactor 0.00
Article influence 0.62
Website The Biological Bulletin website
Other titles The Biological bulletin
ISSN 0006-3185
OCLC 1536426
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Marine Biological Laboratory

  • Pre-print
    • Archiving status unclear
  • Post-print
    • Archiving status unclear
  • Conditions
    • NIH authors may post final revised version of their manuscript in PubMed Central after publication
    • Published source must be acknowledged
    • Must link to publisher version
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Most animals rely on circulating hemocytes as cellular effectors of immunity. These cells traditionally have been characterized by morphology, function, and cellular contents. Morphological descriptions use granule differences and cell shapes; functional descriptions rely on phagocytic ability and oxygen transport; and cellular con- tent descriptions include cytochemical features and key enzymes. Key enzymes used to identify phagocytes in tissues include hydrolytic enzymes, peroxidase, and––in invertebrates––phenoloxidase. Cnidaria such as Swiftia exserta lack a circulatory system, thereby complicating the identification of immune effector cells. As a first step in identifying immunocytes, this study focused on basic enzymes used during phagocytosis and encapsulation; both processes have been reported in octocorals such as S. exserta. Earlier work suggested that there are two populations of phagocytic cells: a constitutive population and an induced population following a trauma-associated challenge. To identify the constitutive immune effector cells in S. exserta in a nonactivated state, we used cryosections of unstimulated animals and the following enzymes to serve as identifying proxies due to their roles in phagocytosis and encapsulation: (1) acid phosphatase, (2) alkaline phosphatase, (3) non-specific esterase, (4) beta-glucuronidase, (5) peroxidase, and (6) phenoloxidase. Our results indicate that in unstimulated animals, two distinct cell populations could function as immunocytes. These cell types were differentiated by their enzyme reactivity and their location within the mesoglea of S. exserta, and have been described as either “oblong granular cells” or “granular amoebocytes.”
    Biological Bulletin 10/2015; 229(2):199-208.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first step in smelling is capture of odorant molecules from the surrounding fluid. We used lateral flagella of olfactory antennules of crabs Callinectes sapidus to study the physical process of odor capture by antennae bearing dense tufts of hair-like chemosensory sensilla (aesthetascs). Fluid flow around and through aesthetasc arrays on dynamically scaled models of lateral flagella of C. sapidus was measured by particle image velocimetry to determine how antennules sample the surrounding water when they flick. Models enabled separate evaluation of the effects of flicking speed, aesthetasc spacing, and antennule orientation. We found that crab antennules, like those of other malacostracan crustaceans, take a discrete water sample during each flick by having a rapid downstroke, during which water flows into the aesthetasc array, and a slow recovery stroke, when water is trapped in the array and odorants have time to diffuse to aesthetascs. However, unlike antennules of crustaceans with sparse aesthetasc arrays, crabs enhance sniffing via additional mechanisms: 1) Aesthetascs are flexible and splay as a result of the hydrodynamic drag during downstrokes, then clump together during return strokes; and 2) antennules flick with aesthetascs on the upstream side of the stalk during downstrokes, but are hidden downstream during return strokes. Aiming aesthetascs into ambient flow maintains sniffing. When gaps between aesthetascs are wide, changes in antennule speed are more effective at altering flow through the array than when gaps are narrow. Nonetheless, if crabs had fixed gap widths, their ability to take discrete samples of their odorant environment would be diminished.
    Biological Bulletin 10/2015; 229(2):185-198.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Making inferences about the evolution of larval nutritional mode and feeding mechanisms in annelids requires data on the form and function of the larvae, but such data are lacking for many taxa. Though some capitellid annelids are known or suspected to have planktotrophic larvae, these larvae have not previously been described in sufficient detail to understand how they feed. Here we describe embryos and larvae of the capitellid Notomastus cf. tenuis from San Juan Island, Washington State. Fertilized oocytes average about 58 μm in equivalent spherical diameter. Early embryos undergo spiral cleavage and develop into larvae that feed for about 5 weeks before metamorphosis. Larvae of N. cf. tenuis capture food particles between prototrochal and metatrochal ciliary bands and transport them to the mouth in an intermediate food groove; this arrangement is typical of "opposed band" larval feeding systems. Surprisingly, however, larvae of N. cf. tenuis appeared to have only simple cilia in the prototrochal ciliary band; among planktotrophic larvae of annelids, simple cilia in the prototroch were previously known only from members of Oweniidae. The anteriormost tier of prototrochal cilia in N. cf. tenuis appears to be non-motile; its role in swimming or particle capture is unclear. Like some planktotrophic larvae in the closely related Echiuridae and Opheliidae, larvae of N. cf. tenuis can capture relatively large particles (up to at least 45 μm in diameter), suggesting that they may use an alternative particle capture mechanism in addition to opposed bands of cilia. © 2015 Marine Biological Laboratory.
    Biological Bulletin 02/2015; 228(1):25-38.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cephalochordate genera Branchiostoma and Asymmetron diverged during the Mesozoic Era. In spite of the long separation of the parental clades, eggs of the Florida amphioxus, B. floridae, when fertilized with sperm of the Bahamas lancelet, A. lucayanum (and vice versa), develop through embryonic and larval stages. The larvae reach the chordate phylotypic stage (i.e., the pharyngula), characterized by a dorsal nerve cord, notochord, perforate pharynx, and segmented trunk musculature. After about 2 weeks of larval development, the hybrids die, as do the A. lucayanum purebreds, although all were eating the same algal diet that sustains B. floridae purebreds through adulthood in the laboratory; it is thus unclear whether death of the hybrids results from incompatible parental genomes or an inadequate diet. The diploid chromosome count in A. lucayanum and B. floridae purebreds is, respectively, 34 and 38, whereas it is 36 in hybrids in either direction. The hybrid larvae exhibit several morphological characters intermediate between those of the parents, including the size of the preoral ciliated pit and the angles of deflection of the gill slits and anus from the ventral midline. Based on the time since the two parent clades diverged (120 or 160 million years, respectively, by nuclear and mitochondrial gene analysis), the cross between Branchiostoma and Asymmetron is the most extreme example of hybridization that has ever been unequivocally demonstrated among multicellular animals. © 2015 Marine Biological Laboratory.
    Biological Bulletin 02/2015; 228(1):13-24.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some egg-bearing (ovigerous) American lobsters (Homarus americanus) make seasonal inshore-to-offshore movements, subjecting their eggs to different thermal regimes than those of eggs carried by lobsters that do not make these movements. Our goal was to determine if differences in thermal regimes influence the rate of egg development and the subsequent time of hatch. We subjected ovigerous lobsters to typical inshore or offshore water temperatures from September to August in the laboratory (n = 8 inshore and 8 offshore, each year) and in the field (n = 8 each, inshore and offshore), over 2 successive years. Although the rate of egg development did not differ significantly between treatments in the fall (P ∼ 0.570), eggs exposed to inshore thermal regimes developed faster in the spring (P < 0.001). "Inshore" eggs hatched about 30 days earlier (mean = 26 June) than "offshore" eggs (mean = 27 July), and their time of development from the onset of eyespot to hatch was significantly shorter (inshore = 287 ± 11 days vs. offshore: 311.5 ± 7.5 days, P = 0.034). Associated growing degree-days (GDD) did not differ significantly between inshore and offshore thermal treatments (P = 0.061). However, eggs retained by lobsters exposed to offshore thermal regimes accumulated more GDD in the winter than did eggs carried by inshore lobsters, while eggs exposed to inshore temperatures acquired them more rapidly in the spring. Results suggest that seasonal movements of ovigerous lobsters influence the time and location of hatching, and thus the transport and recruitment of larvae to coastal and offshore locations. © 2015 Marine Biological Laboratory.
    Biological Bulletin 02/2015; 228(1):1-12.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the large variation in adult bodyplan phenotypes, a worm-shaped morphology is considered plesiomorphic for both Lophotrochozoa and Bilateria. Although almost all larval and adult lophotrochozoan worms have serially arranged ring muscles in their body wall, a comparison of their ontogeny reveals no less than six different developmental pathways that lead to this homogenous arrangement of ring muscles. However, in all taxa, with the exception of chaetodermomorph molluscs and the segmented annelids, ring muscle development starts with synchronous formation of certain pioneer myocytes, which is thus considered basal for Lophotrochozoa. Recent studies on spiralian neurogenesis revealed remnants of ancestral segmentation in echiurans and sipunculans, thus confirming molecular phylogenetic studies that propose a close relationship of these three taxa. Larval entoprocts exhibit a mosaic of larval and adult molluscan characters and, among other apomorphies, share with polyplacophoran Mollusca a complex larval apical organ and a tetraneurous nervous system, strongly suggesting a monophyletic assemblage of Entoprocta and Mollusca. The term Tetraneuralia is proposed herein for this lophotrochozoan clade. Overall, formation of the lophotrochozoan neuromuscular bodyplan appears as a highly dynamic process on both the ontogenetic and the evolutionary timescales, highlighting the importance of insights into these processes for reconstructing ancestral bodyplan features and phylogenetic relationships.
    Biological Bulletin 07/2009; 216(3):293-306. DOI:10.2307/25548161