21,717.09
5.49
5,104

Publication History View all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Complement Factor H (FH) is an abundant, non-enzymic plasma/serum glycoprotein, which has a major role in regulating activation of the complement system. It can be purified from human plasma/serum by affinity chromatography, using a monoclonal anti-FH antibody as ligand. Other affinity chromatography ligands, including cardiolipin and trinitrophenyl-bovine serum albumin (TNP-BSA), can be used to purify human FH and also FH from a wide range of vertebrates, including mammals, birds, bony fish. Human FH protein concentration can be quantified by sandwich ELISA. The activity of FH is generally measured by assays which detect the cleavage, by complement factor I, of the complement protein C3b to form iC3b. Cleavage occurs only in the presence of a cofactor, and FH is one of a small number of cofactors for this reaction.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1100:207-23.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report an unusual case of a patient with two combined X-linked diseases, severe hemophilia A (HA) and Duchenne muscular dystrophy (DMD), of which only HA was hereditary. There was no family history of muscular dystrophy. Genetic analysis revealed that HA was caused by the hereditary coagulation factor VIII (F8) intron 22 inversion (distal/type I inversion), whereas DMD was caused by a de novo deletion in the dystrophin gene. This is the first report of a patient with two severe X-linked diseases, of which only HA was hereditary. Despite the fact that the probability of acquiring two X-linked abnormalities, one hereditary and one de novo, is extremely low, the emergence of such cases indicates that genetic testing for distinct X-linked diseases could be of importance in patients with hereditary hemophilia.
    International journal of hematology 12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radiation damage is a major cause of failure in macromolecular crystallography experiments. Although it is always best to evenly illuminate the entire volume of a homogeneously diffracting crystal, limitations of the available equipment and imperfections in the sample often require a more sophisticated targeting strategy, involving microbeams smaller than the crystal, and translations of the crystal during data collection. This leads to a highly inhomogeneous distribution of absorbed X-rays (i.e., dose). Under these common experimental conditions, the relationship between dose and time is nonlinear, making it difficult to design an experimental strategy that optimizes the radiation damage lifetime of the crystal, or to assign appropriate dose values to an experiment. We present, and experimentally validate, a predictive metric diffraction-weighted dose for modeling the rate of decay of total diffracted intensity from protein crystals in macromolecular crystallography, and hence we can now assign appropriate "dose" values to modern experimental setups. Further, by taking the ratio of total elastic scattering to diffraction-weighted dose, we show that it is possible to directly compare potential data-collection strategies to optimize the diffraction for a given level of damage under specific experimental conditions. As an example of the applicability of this method, we demonstrate that by offsetting the rotation axis from the beam axis by 1.25 times the full-width half maximum of the beam, it is possible to significantly extend the dose lifetime of the crystal, leading to a higher number of diffracted photons, better statistics, and lower overall radiation damage.
    Proceedings of the National Academy of Sciences 12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although current textbook explanations of cell-cycle control in eukaryotes emphasize the periodic activation of cyclin-dependent protein kinases (CDKs), recent experimental observations suggest a significant role for the periodic activation and inactivation of a CDK-counteracting protein phosphatase 2A with a B55δ subunit (PP2A:B55δ), during mitotic cycles in frog-egg extracts and early embryos. In this paper, we extend an earlier mathematical model of embryonic cell cycles to include experimentally motivated roles for PP2A:B55δ and its regulation by Greatwall kinase. Our model is consistent with what is already known about the regulation of CDK and PP2A:B55δ in frog eggs, and it suggests a previously undescribed role for the Greatwall-PP2A:B55δ interaction in creating a toggle switch for activation of the anaphase-promoting complex as embryonic cells exit mitosis and return to interphase.
    Proceedings of the National Academy of Sciences 12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Centromere proteins CENP-S and CENP-X are members of the constitutive centromere-associated network, which is a conserved group of proteins that are needed for the assembly and function of kinetochores at centromeres. Intriguingly CENP-S and CENP-X have alter egos going by the names of MHF1 (FANCM-associated histone-fold protein 1) and MHF2 respectively. In this guise they function with a DNA translocase called FANCM (Fanconi's anemia complementation group M) to promote DNA repair and homologous recombination. In the present review we discuss current knowledge of the biological roles of CENP-S and CENP-X and how their dual existence may be a common feature of CCAN (constitutive centromere-associated network) proteins.
    Biochemical Society Transactions 12/2013; 41(6):1726-1730.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic mRNAs are extensively processed to generate functional transcripts, which are 5' capped, spliced and 3' polyadenylated. Accumulation of unprocessed (aberrant) mRNAs can be deleterious for the cell, hence processing fidelity is closely monitored by QC (quality control) mechanisms that identify erroneous transcripts and initiate their selective removal. Nucleases including Xrn2/Rat1 and the nuclear exosome have been shown to play an important role in the turnover of aberrant mRNAs. Recently, with the growing appreciation that mRNA processing occurs concomitantly with polII (RNA polymerase II) transcription, it has become evident that QC acts at the transcriptional level in addition to degrading aberrant RNAs. In the present review, we discuss mechanisms that allow cells to co-transcriptionally initiate the removal of RNAs as well as down-regulate transcription of transcripts where processing repeatedly fails.
    Biochemical Society Transactions 12/2013; 41(6):1666-1672.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the dissolution of sister chromatid cohesion by separase and cyclin B destruction is irreversible, it is essential to delay both until all chromosomes have bioriented on the mitotic spindle. Kinetochores that are not correctly attached to the spindle generate the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C) and blocks anaphase onset. This process is known as the spindle assembly checkpoint (SAC) [1]. The SAC is especially important in meiosis I, where bivalents consisting of homologous chromosomes held together by chiasmata biorient. Since the first meiotic division is unaffected by rare achiasmatic chromosomes or misaligned bivalents [2-7], it is thought that several tensionless kinetochores are required to produce sufficient MCC for APC/C inhibition. Consistent with this, univalents lacking chiasmata elicit a SAC-mediated arrest in Mlh1(-/-) oocytes. In contrast, chromatids generated by TEV protease-induced cohesin cleavage in Rec8(TEV/TEV) oocytes merely delay APC/C activation. Since the arrest of Mlh1(-/-)Rec8(TEV/TEV) oocytes is alleviated by TEV protease, even when targeted to kinetochores, we conclude that their SAC depends on cohesin as well as dedicated kinetochore proteins. This has important implications for aging oocytes [8, 9], where cohesin deterioration will induce sister kinetochore biorientation and compromise MCC production, leading to chromosome missegregation and aneuploid fetuses.
    Current biology: CB 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Notch pathway is a core cell-cell signaling system in metazoan organisms with key roles in cell-fate determination, stem cell maintenance, immune system activation, and angiogenesis. Signals are initiated by extracellular interactions of the Notch receptor with Delta/Serrate/Lag-2 (DSL) ligands, whose structure is highly conserved throughout evolution. To date, no structure or activity has been associated with the extreme N termini of the ligands, even though numerous mutations in this region of Jagged-1 ligand lead to human disease. Here, we demonstrate that the N terminus of human Jagged-1 is a C2 phospholipid recognition domain that binds phospholipid bilayers in a calcium-dependent fashion. Furthermore, we show that this activity is shared by a member of the other class of Notch ligands, human Delta-like-1, and the evolutionary distant Drosophila Serrate. Targeted mutagenesis of Jagged-1 C2 domain residues implicated in calcium-dependent phospholipid binding leaves Notch interactions intact but can reduce Notch activation. These results reveal an important and previously unsuspected role for phospholipid recognition in control of this key signaling system.
    Cell Reports 11/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The arrangement of water and chloride ions around a model peptide (glycyl-l-prolyl-glycine-NH2) was investigated using Molecular Dynamics (MD) simulations and complementary Empirical Potential Structure Refinement (EPSR) simulations which adapt the modelled structure to reproduce experimentally measured neutron diffraction data. The results are in good qualitative agreement and show a common picture for all hydrogen-containing amine and amide groups: namely that there are two common chloride interactions observed - a direct contact between Cl(-) and peptide backbone and a water-mediated interaction. The geometry of this mediation depends on the distance between chloride and nitrogen and hints towards two distinct modes of interaction between water and the ion, either along one of the O-H bonds or along the water dipole.
    Physical Chemistry Chemical Physics 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine [1, 2], while others attack via its external surface [1, 3-6]. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses [7, 8]. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection [6]. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi [4].
    Current biology: CB 11/2013; 23(21):2157-2161.
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.