Oxford, Oxfordshire, United Kingdom

Departments View all

Department of Chemistry
13,916
Total Impact Points
340
Members
Department of Engineering Science
5,533
Total Impact Points
316
Members
Department of Physics
12,771
Total Impact Points
300
Members

Publication History View all

  • Source
    12/2015; 200(2-2):699-717. DOI:10.1093/gji/ggu414
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 1673, Martin Lister explored the preservation of 'St Cuthbert's beads' plus other fossil crinoid remains from approximately 350 Ma Carboniferous limestone in northern England. He used taphonomic evidence (transport, disarticulation, burial and cementation) to infer an origin as petrified plant remains, in contrast with his views expressed elsewhere that fossil mollusc shells could have formed abiogenically, by 'plastic forces' within rock. Lister also observed pentagonal symmetry, now seen as characteristic of living echinoderm skeletons. A postscript from John Ray supports Lister's 'taphonomic' observations and accepts the biogenicity of these fossil 'vegetables'. Ray then concluded with a prophecy, predicting the discovery of comparable living fossils in remote ocean waters. These early discussions compare with current debates about the character of candidate microfossils from the early Earth and Mars. Interesting biomorphs are now tested against the abiogenic null hypotheses, making use of features such as those pioneered by Lister, including evidence for geological context, rules for growth and taphonomy. Advanced techniques now allow us to extend this list of criteria to include the nanoscale mapping of biology-like behaviour patterns plus metabolic pathways. Whereas the science of palaeobiology once began with tests for biogenicity, the same is now true for geobiology and astrobiology. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 04/2015; 373(2039). DOI:10.1098/rsta.2014.0254
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 04/2015; 373(2039). DOI:10.1098/rsta.2014.0227

Information

  • Address
    University of Oxford, University Offices, Wellington Square, OX1 2JD, Oxford, Oxfordshire, United Kingdom
  • Head of Institution
    The Rt Hon the Lord Patten of Barnes, CH
  • Website
    http://www.ox.ac.uk
  • Phone
    +44 1865 270000
  • Fax
    +44 1865 270708
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

7263 Members View all

View all

Top publications last week by downloads

 
Journal of bacteriology 07/2013; DOI:10.1128/JB.00686-13
308 Downloads
 
BMJ (online) 01/2010; 340:c1900.
251 Downloads

Top Collaborating Institutions

Collaborations

This map visualizes which other institutions researchers from University of Oxford have collaborated with.

Rg score distribution

See how the RG Scores of researchers from University of Oxford are distributed.