41
124.86
3.05
88

Publication History View all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Raman spectroscopy is a powerful tool for studying the biochemical composition of tissues and cells in the human body. We describe the initial results of a feasibility study to design and build a miniature, fiber optic probe incorporated into a standard hypodermic needle. This probe is intended for use in optical biopsies of solid tissues to provide valuable information of disease type, such as in the lymphatic system, breast, or prostate, or of such tissue types as muscle, fat, or spinal, when identifying a critical injection site. The optical design and fabrication of this probe is described, and example spectra of various ex vivo samples are shown.
    Applied Spectroscopy 03/2013; 67(3):349-54.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thermal barrier coatings (TBC) are used widely on a range of components that operate at high temperatures. We report measurement of the factor that is required to convert the Raman shift to stress for air plasma sprayed yttria (7 wt %) stabilized tetragonal zirconia (ZrO(2)) (YSZ) thermal barrier coatings. The factor is evaluated for the as-coated condition and also following a heat treatment at 1000 °C for 1050 h. Two Raman bands at 608 cm(-1) and 640 cm(-1) have been investigated in a diamond anvil cell under hydrostatic pressure up to ∼24 GPa. In the range of zero to ∼1.6 GPa, a linear behavior was observed in terms of the shifts of these two Raman bands with a gradient similar to dense bulk tetragonal ZrO(2). From these measurements the factors to convert wavenumber shift to stress have been derived. The application of these conversion factors to stress measurement in TBC coated test specimens and components is discussed.
    Applied Spectroscopy 10/2012; 66(10):1204-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For the past 15 years, nanoscale metallic iron (nZVI) has been investigated as a new tool for the treatment of contaminated water and soil. The technology has reached commercial status in many countries worldwide, however is yet to gain universal acceptance. This review summarises our contemporary knowledge of nZVI aqueous corrosion, manufacture and deployment, along with methods to enhance particle reactivity, stability and subsurface mobility. Reasons for a lack of universal acceptance are also explored. Key factors include: concerns over the long-term fate, transformation and ecotoxicity of nZVI in environmental systems and, a lack of comparable studies for different nZVI materials and deployment strategies. It is highlighted that few investigations to date have examined systems directly analogous to the chemistry, biology and architecture of the terrestrial environment. Such emerging studies have highlighted new concerns, including the prospect for remobilisation of heavy metals and radionuclides over extended periods. The fundamental importance of being able to accurately predict the long-term physical, chemical and biological fate of contaminated sites following nZVI treatment is emphasised and, as part of this, a universal empirical testing framework for nZVI is suggested.
    Journal of hazardous materials 11/2011; 211-212:112-25.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photocatalytic reduction of carbon dioxide (CO(2)) on jet spray formed titanium dioxide (TiO(2)) was studied using light-emitting diode (LED) illumination centred at a wavelength of 388 nm. In addition, the photocatalytic reduction of CO(2) under soft X-ray irradiation was also studied. Specifically, the experiments examined the reduction of CO(2) in a gaseous and liquid-gas system using residual gas analysis mass spectrometry. A photochemical reduction of CO(2) was observed over a course of 250 min, with transformation to a major product, C(2)H(3)O(-) (ethenolate), until equilibrium was reached. The product was observed to be surface stabilised, with it reverting back to CO(2) over the course of 100 min without illumination. A proposed free radical mechanism is presented for the formation of this product. A similar effect to that of UV illumination is also observed to occur under the influence of soft X-rays, which presents a potentially significant alternative method for the activation of TiO(2).
    Journal of hazardous materials 09/2011; 211-212:247-54.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.
    Journal of hazardous materials 08/2011; 195:115-23.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The current work presents a comparative and site specific study for the application of zero-valent iron nanoparticles (nano-Fe(0)) and magnetite nanoparticles (nano-Fe(3)O(4)) for the removal of U from carbonate-rich environmental water taken from the Lişava valley, Banat, Romania. Nanoparticles were introduced to the Lişava water under surface and deep aquifer oxygen conditions, with a U(VI)-only solution studied as a simple system comparator. Thebatch systems were analysed over an 84 day reaction period, during which the liquid and nanoparticulate solids were periodically sampled to determine chemical evolution of the solutions and particulates. Results indicated that U was removed by all nano-Fe(0) systems to <10 μg L(-1) (>98% removal) within 2 h of reaction, below EPA and WHO specified drinking water regulations. Similar U concentrations were maintained until approximately 48 h. X-ray photoelectron spectroscopy analysis of the nanoparticulate solids confirmed partial chemical reduction of U(VI) to U(IV) concurrent with Fe oxidation. In contrast, nano-Fe(3)O(4) failed to achieve >20% U removal from the Lişava water. Whilst the outer surface of both the nano-Fe(0) and nano-Fe(3)O(4) was initially near-stoichiometric magnetite, the greater performance exhibited by nano-Fe(0) is attributed to the presence of a Fe(0) core for enhanced aqueous reactivity, sufficient to achieve near-total removal of aqueous U despite any competing reactions within the carbonate-rich Lişava water. Over extended reaction periods (>1 week) the chemically simple U(VI)-only solution treated using nano-Fe(0) exhibited near-complete and maintained U removal. In contrast, appreciable U re-release was recorded for the Lişava water solutions treated using nano-Fe(0). This behaviour is attributed to the high stability of U in the presence of ligands (predominantly carbonate) within the Lişava water, inducing preferential re-release to the aqueous phase during nano-Fe(0) corrosion. The current study therefore provides clear evidence for the removal and immobilisation of U from environmental waters using Fe-based nanoparticles. As a contrast to previous experimental studies reporting impressive figures for U removal and retention from simple aqueous systems, the present work demonstrates both nanomaterials as ineffective on timescales >1 week. Consequently further research is required to develop nanomaterials that exhibit greater reactivity and extended retention of inorganic contaminants in chemically complex environmental waters.
    Water Research 03/2011; 45(9):2931-42.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although contaminant removal from water using zero-valent iron nanoparticles (INP) has been investigated for a wide array of chemical pollutants, the majority of studies to date have only examined the reaction of INP in simple single-contaminant systems. Such systems fail to reproduce the complexity of environmental waters and consequently fail as environmental analogues due to numerous competitive reactions not being considered. Consequently there is a high demand for multi-elemental and site-specific studies to advance the design of INP treatment infrastructure. Here INP are investigated using batch reactor systems over a range of pH for the treatment of water containing multi-element contaminants specifically U, Cu, Cr and Mo, selected to provide site-specific analogues for leachants collected from the Lişava mine, near Oraviţa in South West Romania. Concurrently, a U-only solution was also analysed as a single-system for comparison. Results confirmed the suitability of nano-Fe(0) as a highly efficient reactive material for the aqueous removal of Cr(IV), Cu(II) and U(VI) over a range of pH applicable to environmental waters. Insufficient Mo(VI) removal was observed at pH >5.7, suggesting that further studies were necessary to successfully deploy INP for the treatment of geochemically complex mine water effluents. Results also indicated that uranium removal in the multi-element system was less than for the comparator containing only uranium.
    Journal of hazardous materials 02/2011; 186(1):280-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zero-valent iron nanoparticles (INP) were investigated as a remediation strategy for a uranium-contaminated waste effluent from AWE, Aldermaston. Nanoparticles were introduced to the effluent, under both oxic and anoxic conditions, and allowed to react for a 28-d period during which the liquid and nanoparticle solids were periodically sampled. Analysis of the solution indicated that under both conditions U was removed to <1.5% of its initial concentration within 1h of introduction and remained at similar concentrations until approximately 48 h. A rapid release of Fe into solution was also recorded during this initial period; attributed to the limited partial dissolution of the INP. XPS analyses of the reacted nanoparticulate solids between 1 and 48 h showed an increased Fe(III):Fe(II) ratio, consistent with the detection of iron oxidation products (akaganeite and magnetite) by XRD and FIB. XPS analysis also recorded uranium on the recovered particulates indicating the chemical reduction of U(VI) to U(IV) within 1h. Following the initial retention period U-dissolution of U was recorded from 48 h, and attributed to reoxidation. The efficient uptake and retention of U on the INP for periods up to 48 h provide proof that INP may be effectively used for the remediation of complex U-contaminated effluents.
    Journal of hazardous materials 06/2010; 178(1-3):171-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper, and the research it describes, examines the benefits and importance of good site practice for the aftercare of lime mortars and renders. The control of moisture is explored in relation to mortar development. This work shows the way in which proper aftercare in terms of wetting, drying and protection enables lime mortars and renders to perform at their best. It is important that Architects, Engineers and specifiers can rely on craftspeople who understand the need for aftercare and ensure that best practice is followed. This paper provides a scientific explanation of how the traditional practice to control moisture, before and immediately following the application of building limes, works to improve set and durability.Scientific reasons for the traditional site practice of damping down the background to application of lime mixes, and the subsequent tending of finished work, are explained by reference to laboratory research developed for the purpose.
    Construction and Building Materials. 01/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Raman spectroscopy is a powerful tool for studying biochemical changes in the human body. We describe a miniature, confocal fibre optic probe intended to fit within the instrument channel of a standard medical endoscope. This probe has been optimized for the study of the carcinogenesis process of oesophageal malignancy. The optical design and fabrication of this probe is described including the anisotropic wet etching technique used to make silicon motherboards and jigs. Example spectra of PTFE reference samples are shown. Spectra with acquisition times as low as 2 s from resected oesophageal tissue are presented showing identifiable biochemical changes from various pathologies.
    Physics in Medicine and Biology 11/2009; 54(23):7077-87.
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.