383
494.04
1.29
556

Publication History View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Automotive electronics are becoming ever more com-plex. The quantity and sensitivity of data that is transmitted throughout a car is expected to continue to increase in coming years. On board computers can contain information about the car and dic-tate how the car behaves. This means that these systems need to be secure to protect the data held within such system so that the behaviour cannot be modified by an unauthorised user. This paper outlines a method for implementing AES encryption over a CAN bus and how such a system could be attacked using Correlation Power Analysis.
    07/2019; DOI:10.1049/cp:20080630
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biologists are increasingly confronted with the challenge of quickly understanding genome-wide biological data, which usually involve a large number of genomic coordinates (e.g. genes) but a much smaller number of samples. To meet the need for data of this shape, we present an open-source package called 'supraHex' for training, analysing and visualising omics data. This package devises a supra-hexagonal map to self-organise the input data, offers scalable functionalities for post-analysing the map, and more importantly, allows for overlaying additional data to explore possible relationships, via the specific application to DNA replication timing data of mouse embryogenesis, we demonstrate that supraHex is capable of simultaneously carrying out gene clustering and sample correlation, providing intuitive visualisation at each step of the analysis. By overlaying CpG and expression data onto the trained replication-timing map, we also show that supraHex is able to intuitively capture an inherent relationship between late replication of low CpG density promoters and low expression levels. As part of the Bioconductor project, supraHex makes accessible to a wide community in a simple way, what would otherwise be a complex framework for the ultrafast understanding of any tabular omics data, both scientifically and artistically. This package can run on Windows, Mac and Linux, and is freely available together with many tutorials on featuring real examples at http://supfam.org/SUPERFAMILY/dcGO/supraHex.html.
    Biochemical and Biophysical Research Communications 12/2013; 443(1). DOI:10.1016/j.bbrc.2013.11.103
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially, and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available sources of information, that influences the sampling strategy.
    PLoS ONE 11/2013; 8(11):e78993. DOI:10.1371/journal.pone.0078993
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has recently become established that the spread of infectious diseases between humans is affected not only by the pathogen itself but also by changes in behavior as the population becomes aware of the epidemic, for example, social distancing. It is also well known that community structure (the existence of relatively densely connected groups of vertices) in contact networks influences the spread of disease. We propose a set of local strategies for social distancing, based on community structure, that can be employed in the event of an epidemic to reduce the epidemic size. Unlike most social distancing methods, ours do not require individuals to know the disease state (infected or susceptible, etc.) of others, and we do not make the unrealistic assumption that the structure of the entire contact network is known. Instead, the recommended behavior change is based only on an individual's local view of the network. Each individual avoids contact with a fraction of his/her contacts, using knowledge of his/her local network to decide which contacts should be avoided. If the behavior change occurs only when an individual becomes ill or aware of the disease, these strategies can substantially reduce epidemic size with a relatively small cost, measured by the number of contacts avoided.
    Physical Review E 10/2013; 88(4-1):042801. DOI:10.1103/PhysRevE.88.042801
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a daily-updated sequenced/species Tree Of Life (sTOL) as a reference for the increasing number of cellular organisms with their genomes sequenced. The sTOL builds on a likelihood-based weight calibration algorithm to consolidate NCBI taxonomy information in concert with unbiased sampling of molecular characters from whole genomes of all sequenced organisms. Via quantifying the extent of agreement between taxonomic and molecular data, we observe there are many potential improvements that can be made to the status quo classification, particularly in the Fungi kingdom; we also see that the current state of many animal genomes is rather poor. To augment the use of sTOL in providing evolutionary contexts, we integrate an ontology infrastructure and demonstrate its utility for evolutionary understanding on: nuclear receptors, stem cells and eukaryotic genomes. The sTOL (http://supfam.org/SUPERFAMILY/sTOL) provides a binary tree of (sequenced) life, and contributes to an analytical platform linking genome evolution, function and phenotype.
    Scientific Reports 06/2013; 3:2015. DOI:10.1038/srep02015
  • Current Opinion in Structural Biology 05/2013; 23(3). DOI:10.1016/j.sbi.2013.05.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sampling techniques such as Respondent-Driven Sampling (RDS) are widely used in epidemiology to sample "hidden" populations, such that properties of the network can be deduced from the sample. We consider how similar techniques can be designed that allow the discovery of the structure, especially the community structure, of networks. Our method involves collecting samples of a network by random walks and reconstructing the network by probabilistically coalescing vertices, using vertex attributes to determine the probabilities. Even though our method can only approximately reconstruct a part of the original network, it can recover its community structure relatively well. Moreover, it can find the key vertices which, when immunized, can effectively reduce the spread of an infection through the original network.
    PLoS ONE 04/2013; 8(4):e61006. DOI:10.1371/journal.pone.0061006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein domains are classified as units of structure, evolution and function, and thus form the molecular backbone of biosphere. Although functional networks at the protein level have been reported to be of value in predicting diseases (phenotypes or drugs), they have not previously been applied at the sub-protein resolution (protein domain in this case). We herein introduce a domain network with a functional perspective. This network has nodes consisting of protein domains (at the superfamily/evolutionary level), with edges weighted by the semantic similarity according to domain-centric Gene Ontology (dcGO) annotations, which henceforth we call "dcGOnet". By globally exploring this network via a random walk, we demonstrate its predictive value on disease, drug, or phenotype-related ontologies. On cross-validation recovering ontology labels for domains, we achieve an overall area under the ROC curve of 89.0% for drugs, 87.3% for diseases, 87.6% for human phenotypes and 88.2% for mouse phenotypes. We show that the performance using global information from this network is significantly better than using local information, and also illustrate that the better performance is not sensitive to network size, or the choice of algorithm parameters, and is universal to different ontologies. Based on the dcGOnet and its global properties, we further develop an approach to build a disease-drug-phenotype matrix. The predicted interconnections are statistically supported using a novel randomization procedure, and are also empirically supported by inspection for biological relevance. Most of the high-ranking predictions recover connections that are well known, but others uncover connections that have only suggestive or obscure support in the literature; we show that these are missed by simpler methods, in particular for drug-disease connections. The value of this work is threefold: we describe a general methodology and make the software available, we provide the functional domain network itself, and the ranked drug-disease-phenotype matrix provides rich targets for investigation. All three can be found at .
    Molecular BioSystems 03/2013; DOI:10.1039/c3mb25495j
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:Computational/manual annotations of protein functions are one of the first routes to making sense of a newly sequenced genome. Protein domain predictions form an essential part of this annotation process. This is due to the natural modularity of proteins with domains as structural, evolutionary and functional units. Sometimes two, three, or more adjacent domains (called supra-domains) are the operational unit responsible for a function, e.g. via a binding site at the interface. These supra-domains have contributed to functional diversification in higher organisms. Traditionally functional ontologies have been applied to individual proteins, rather than families of related domains and supra-domains. We expect, however, to some extent functional signals can be carried by protein domains and supra-domains, and consequently used in function prediction and functional genomics.RESULTS:Here we present a domain-centric Gene Ontology (dcGO) perspective. We generalize a framework for automatically inferring ontological terms associated with domains and supra-domains from full-length sequence annotations. This general framework has been applied specifically to primary protein-level annotations from UniProtKB-GOA, generating GO term associations with SCOP domains and supra-domains. The resulting 'dcGO Predictor', can be used to provide functional annotation to protein sequences. The functional annotation of sequences in the Critical Assessment of Function Annotation (CAFA) has been used as a valuable opportunity to validate our method and to be assessed by the community. The functional annotation of all completely sequenced genomes has demonstrated the potential for domain-centric GO enrichment analysis to yield functional insights into newly sequenced or yet-to-be-annotated genomes. This generalized framework we have presented has also been applied to other domain classifications such as InterPro and Pfam, and other ontologies such as mammalian phenotype and disease ontology. The dcGO and its predictor are available at http://supfam.org/SUPERFAMILY/dcGO including an enrichment analysis tool.CONCLUSIONS:As functional units, domains offer a unique perspective on function prediction regardless of whether proteins are multi-domain or single-domain. The 'dcGO Predictor' holds great promise for contributing to a domain-centric functional understanding of genomes in the next generation sequencing era.
    BMC Bioinformatics 02/2013; 14(Suppl 3-Suppl 3):S9. DOI:10.1186/1471-2105-14-S3-S9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or 'contexts' allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects.
    Journal of The Royal Society Interface 02/2013; 10(82):20130069. DOI:10.1098/rsif.2013.0069
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.
View all

Top publications last week

 
11th International Symposium on Quality of Electronic Design (ISQED 2010), 22-24 March 2010, San Jose, CA, USA; 01/2010
19 Downloads
 
Nature Communications 09/2014; 5:4741. DOI:10.1038/ncomms5741
18 Downloads