Departments View all

Faculty of Agriculture
Total Impact Points

Publication History View all

  • [show abstract] [hide abstract]
    ABSTRACT: OSW-1 is a steroidal saponin, which has emerged as an attractive anticancer agent with highly cancer cell selective activity. A fluorescent analog was prepared from the natural product to analyze its cellular uptake and localization. We found that the fluorescent analog is rapidly internalized into cells and is primarily distributed in endoplasmic reticulum and Golgi apparatus.
    Bioorganic & medicinal chemistry letters 02/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: A Gram-negative, magnetotactic bacterium, Magnetospirillum magneticum AMB-1 produces nano-sized magnetic particles (BacMPs) in the cytoplasm. Although various applications of genetically engineered BacMPs have been demonstrated, such as immunoassay, ligand-receptor interaction or cell separation, by expressing a target protein on BacMPs, it has been difficult to express disulfide-bonded proteins on BacMPs due to lack of disulfide-bond formation in the cytoplasm. Here, we propose a novel dual expression system, called in vitro docking, of a disulfide-bonded protein on BacMPs by directing an immunoglobulin Fc-fused target protein to the periplasm and its docking protein ZZ on BacMPs. By in vitro docking, an scFv-Fc fusion protein was functionally expressed on BacMPs in the dimeric or trimeric form. Our novel disulfide-bonded protein expression system on BacMPs will be useful for efficient screening of potential ligands or drugs, analyzing ligand-receptor interactions or as a magnetic carrier for affinity purification.
    Biochemical and Biophysical Research Communications 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: A double-stranded RNA (dsRNA) mycovirus was found in isolate S-0412-II 2a of the rice blast fungus Magnaporthe oryzae. Sequence analysis of the five dsRNA segments (dsRNA1 through dsRNA5) revealed that this mycovirus is closely related to Magnaporthe oryzae chrysovirus 1-A (MoCV1-A), tentatively classified as a member of the Chrysoviridae; therefore, it was named Magnaporthe oryzae chrysovirus 1-B (MoCV1-B). Virus particles were spherical and composed of the ORF1, ORF3 and ORF4 proteins. MoCV1-B-infected isolate S-0412-II 2a showed a more severe impaired phenotype than the MoCV1-A-infected isolate. In a virus-cured isolate, normal growth was restored, implied that MoCV1-B could be involved in this observed phenotype. An unanticipated result was the occurrence of a fungal isolate lacking dsRNA5. The nonessential dsRNA5 had higher sequence identity (96%) with dsRNA5 of MoCV1-A than with the other dsRNA segments (71-79%), indicating that dsRNA5 could be a portable genomic element between MoCV1-A and MoCV1-B.
    Virology 01/2014; 448C:265-273.


  • Address
    Tokyo, Japan
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

306 Members View all

View all

Top publications last week by downloads

05/2011; John Wiley & Sons. ISBN: 9780470647813
Materials Science and Engineering: B. 05/2005; 123(3):194-202.

Top Collaborating Institutions


This map visualizes which other institutions researchers from Tokyo University of Agriculture and Technology have collaborated with.

Rg score distribution

See how the RG Scores of researchers from Tokyo University of Agriculture and Technology are distributed.