302
1,714.39
5.68
634

Publication History View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fields of metallic nanoparticle study and synthetic biology have a great deal to offer one another. Metallic nanoparticles as a class of material have many useful properties. Their small size allows for more points of contact than would be the case with a similar bulk compound, making nanoparticles excellent candidates for catalysts or for when increased levels of binding are required. Some nanoparticles have unique optical qualities, making them well suited as sensors, while others display para-magnetism, useful in medical imaging, especially by Magnetic Resonance Imaging (MRI). Many of these metallic nanoparticles could be used in creating tools for synthetic biology, and conversely the use of synthetic biology could itself be utilised to create nanoparticle tools. Examples given here include the potential use of quantum dots (QDs) and gold nanoparticles as sensing mechanisms in synthetic biology, as well as ways of using synthetic biology to create ways of sensing metal nanoparticles based on current methods of detecting metals and metalloids such as arsenate. There are a number of organisms which are able to produce a range of metallic nanoparticles naturally, such as species of the fungus Phoma which produces anti-microbial silver nanoparticles. The Biological synthesis of nanoparticles may have many advantages over their more traditional industrial synthesis. If the proteins involved in biological nanoparticle synthesis can be put into a suitable bacterial chassis then they might be manipulated and the pathways engineered in order to produce more valuable nanoparticles.
    New Biotechnology 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past one hundred years, deterministic rate equations have been successfully used to infer enzyme-catalysed reaction mechanisms and to estimate rate constants from reaction kinetics experiments conducted in vitro. In recent years, sophisticated experimental techniques have been developed that allow the measurement of enzyme- catalysed and other biopolymer-mediated reactions inside single cells at the single molecule level. Time course data obtained by these methods are considerably noisy because molecule numbers within cells are typically quite small. As a consequence, the interpretation and analysis of single cell data requires stochastic methods, rather than deterministic rate equations. Here we concisely review both experimental and theoretical techniques which enable single molecule analysis with particular emphasis on the major developments in the field of theoretical stochastic enzyme kinetics, from its inception in the mid-twentieth century to its modern day status. We discuss the differences between stochastic and deterministic rate equation models, how these depend on enzyme molecule numbers and substrate inflow into the reaction compartment and how estimation of rate constants from single cell data is possible using recently developed stochastic approaches.
    FEBS Journal 01/2014; 281:518.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viability of the tsetse fly-transmitted African trypanosome Trypanosoma brucei depends on maintenance and expression of its kinetoplast (kDNA), the mitochondrial genome of this parasite and a putative target for veterinary and human antitrypanosomatid drugs. However, the closely related animal pathogens T. evansi and T. equiperdum are transmitted independently of tsetse flies and survive without a functional kinetoplast for reasons that have remained unclear. Here, we provide definitive evidence that single amino acid changes in the nuclearly encoded F1FO-ATPase subunit γ can compensate for complete physical loss of kDNA in these parasites. Our results provide insight into the molecular mechanism of compensation for kDNA loss by showing FO-independent generation of the mitochondrial membrane potential with increased dependence on the ADP/ATP carrier. Our findings also suggest that, in the pathogenic bloodstream stage of T. brucei, the huge and energetically demanding apparatus required for kDNA maintenance and expression serves the production of a single F1FO-ATPase subunit. These results have important implications for drug discovery and our understanding of the evolution of these parasites.
    Proceedings of the National Academy of Sciences 08/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experiments show that proteins are translated in sharp bursts; similar bursty phenomena have been observed for protein import into compartments. Here we investigate the effect of burstiness in protein expression and import on the stochastic properties of downstream pathways. We consider two identical pathways with equal mean input rates, except in one pathway proteins are input one at a time and in the other proteins are input in bursts. Deterministically the dynamics of these two pathways are indistinguishable. However the stochastic behavior falls in three categories: (i) both pathways display or do not display noise-induced oscillations; (ii) the non-bursty input pathway displays noise-induced oscillations whereas the bursty one does not; (iii) the reverse of (ii). We derive necessary conditions for these three cases to classify systems involving autocatalysis, trimerization and genetic feedback loops. Our results suggest that single cell rhythms can be controlled by regulation of burstiness in protein production.
    Scientific Reports 08/2013; 3:2438.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that internal or molecular noise induces concentration oscillations in chemical systems whose deterministic models exhibit damped oscillations. In this article we show, using the linear-noise approximation of the chemical master equation, that noise can also induce oscillations in systems whose deterministic descriptions admit no damped oscillations, i.e., systems with a stable node. This non-intuitive phenomenon is remarkable since, unlike noise-induced oscillations in systems with damped deterministic oscillations, it cannot be explained by noise excitation of the deterministic resonant frequency of the system. We here prove the following general properties of stable-node noise-induced oscillations for systems with two species: (i) the upper bound of their frequency is given by the geometric mean of the real eigenvalues of the Jacobian of the system, (ii) the upper bound of the Q-factor of the oscillations is inversely proportional to the distance between the real eigenvalues of the Jacobian, and (iii) these oscillations are not necessarily exhibited by all interacting chemical species in the system. The existence and properties of stable-node oscillations are verified by stochastic simulations of the Brusselator, a cascade Brusselator reaction system, and two other simple chemical systems involving auto-catalysis and trimerization. It is also shown how external noise induces stable node oscillations with different properties than those stimulated by internal noise.
    The Journal of Chemical Physics 02/2013; 138(5):055101.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks have evolved as an adaptation to life on a rotating planet, and orchestrate rhythmic changes in physiology to match the time of day. For decades, cellular circadian rhythms were considered to solely result from feedback between the products of rhythmically expressed genes. These transcriptional/translational feedback loops (TTFLs) have been ubiquitously studied, and explain the majority of circadian outputs. In recent years, however, non-transcriptional processes were shown to be major contributors to circadian rhythmicity. These key findings have profound implications on our understanding of the evolution and mechanistic basis of cellular circadian timekeeping. This review summarises and discusses these results and the experimental and theoretical evidence of a possible relation between non-transcriptional oscillator (NTO) mechanisms and TTFL oscillations.
    Trends in Biochemical Sciences 08/2012; 37(11):484-92.
  • Source
    EMBO Reports 08/2012; 13(9):774-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conceptually, on-bead screening is one of the most efficient high-throughput screening (HTS) methods. One of its inherent advantages is that the solid support has a dual function: it serves as a synthesis platform and as a screening compartment. Compound purification, cleavage and storage and extensive liquid handling are not necessary in bead-based HTS. Since the establishment of one-bead one-compound library synthesis, the properties of polymer beads in chemical reactions have been thoroughly investigated. However, the characterization of the kinetics and thermodynamics of protein-ligand interactions on the beads used for screening has received much less attention. Consequently, the majority of reported on-bead screens are based on empirically derived procedures, independent of measured equilibrium constants and rate constants of protein binding to ligands on beads. More often than not, on-bead screens reveal apparent high affinity binders through strong protein complexation on the matrix of the solid support. After decoding, resynthesis, and solution testing the primary hits turn out to be unexpectedly weak binders, or may even fall out of the detection limit of the solution assay. Only a quantitative comparison of on-bead binding and solution binding events will allow systematically investigating affinity differences as function of protein and small molecule properties. This will open up routes for optimized bead materials, blocking conditions and other improved assay procedures. By making use of the unique features of our previously introduced confocal nanoscanning (CONA) method, we investigated the kinetic and thermodynamic properties of protein-ligand interactions on TentaGel beads, a popular solid support for on-bead screening. The data obtained from these experiments allowed us to determine dissociation constants for the interaction of bead-immobilized ligands with soluble proteins. Our results therefore provide, for the first time, a comparison of on-bead versus solution binding thermodynamics. Our data indicate that affinity ranges found in on-bead screening are indeed narrower compared to equivalent interactions in homogeneous solution. A thorough physico-chemical understanding of the molecular recognition between proteins and surface bound ligands will further strengthen the role of on-bead screening as an ultimately cost-effective method in hit and lead finding.
    ChemPhysChem 07/2012; 13(15):3472-80.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic feedback loops in cells break detailed balance and involve bimolecular reactions; hence, exact solutions revealing the nature of the stochastic fluctuations in these loops are lacking. We here consider the master equation for a gene regulatory feedback loop: a gene produces protein which then binds to the promoter of the same gene and regulates its expression. The protein degrades in its free and bound forms. This network breaks detailed balance and involves a single bimolecular reaction step. We provide an exact solution of the steady-state master equation for arbitrary values of the parameters, and present simplified solutions for a number of special cases. The full parametric dependence of the analytical non-equilibrium steady-state probability distribution is verified by direct numerical solution of the master equations. For the case where the degradation rate of bound and free protein is the same, our solution is at variance with a previous claim of an exact solution [J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, Phys. Rev. E 72, 051907 (2005), and subsequent studies]. We show explicitly that this is due to an unphysical formulation of the underlying master equation in those studies.
    The Journal of Chemical Physics 07/2012; 137(3):035104.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Moment-closure approximations have in recent years become a popular means to estimate the mean concentrations and the variances and covariances of the concentration fluctuations of species involved in stochastic chemical reactions, such as those inside cells. The typical assumption behind these methods is that all cumulants of the probability distribution function solution of the chemical master equation which are higher than a certain order are negligibly small and hence can be set to zero. These approximations are ad hoc and hence the reliability of the predictions of these class of methods is presently unclear. In this article, we study the accuracy of the two moment approximation (2MA) (third and higher order cumulants are zero) and of the three moment approximation (3MA) (fourth and higher order cumulants are zero) for chemical systems which are monostable and composed of unimolecular and bimolecular reactions. We use the system-size expansion, a systematic method of solving the chemical master equation for monostable reaction systems, to calculate in the limit of large reaction volumes, the first- and second-order corrections to the mean concentration prediction of the rate equations and the first-order correction to the variance and covariance predictions of the linear-noise approximation. We also compute these corrections using the 2MA and the 3MA. Comparison of the latter results with those of the system-size expansion shows that: (i) the 2MA accurately captures the first-order correction to the rate equations but its first-order correction to the linear-noise approximation exhibits the wrong dependence on the rate constants. (ii) the 3MA accurately captures the first- and second-order corrections to the rate equation predictions and the first-order correction to the linear-noise approximation. Hence while both the 2MA and the 3MA are more accurate than the rate equations, only the 3MA is more accurate than the linear-noise approximation across all of parameter space. The analytical results are numerically validated for dimerization and enzyme-catalyzed reactions.
    The Journal of Chemical Physics 04/2012; 136(15):154105.
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.