Departments View all

Total Impact Points
Total Impact Points
Total Impact Points

Recent Publications View all

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogrid reinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameter and sand in relative density of 60% are used. Also, the effects of depth of first and second geogrid layers and number of reinforcement layers (1 to 4) on the settlement-load response and tilt of footing under various load eccentricities (0 cm, 0.75 cm, 1.5 cm, 2.25 cm and 3 cm) are investigated. Test results indicate that ultimate bearing capacity increases in comparison with unreinforced condition. It is observed that when the reinforcements are placed in the optimum embedment depth (u/D=0.42 and h/D=0.42), the bearing capacity ratio (BCR) increases with increasing load eccentricity to the core boundary of footing, and that with further increase of load eccentricity, the BCR decreases. Besides, the tilt of footing increases linearly with increasing settlement. Finally, by reinforcing the sand bed, the tilt of footing decreases at 2 layers of reinforcement and then increases by increasing the number of reinforcement layers.
    10/2015; DOI:10.1016/j.jrmge.2015.08.006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents an efficient ternary serial adder for nanotechnology employing negative, positive and standard ternary logics. Multiple-valued logic results in chips with more density, less complexity and high-bandwidth data transfer. The unique properties of CNTFETs such as the capability of adapting the desired threshold voltage by changing the diameters of the nanotubes and same carrier mobility for the n-type and p-type devices play an important role in designing this circuit. The proposed design method considerably reduces the number of required devices of a ternary serial adder. In addition, the results of the simulations conducted using HSPICE with the Stanford comprehensive 32 nm CNTFET model, demonstrate improvements in terms of speed and power-delay product as compared to the cutting-edge CNTFET-based ternary designs.
    09/2015; DOI:10.1016/j.jestch.2015.07.015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro induction of polyploids using colchicine causes an increase in DNA content in plants. This is of high importance especially for plants that have medicinal and commercial values. Seeds of two medicinal plants, licorice Glycyrrhiza glabra L. var.glandulifera and safflower Carthamus tinctorius were treated with different concentrations of colchicine, 0%, 0.03%, 0.05%, 0.08%, 0.1% (W/V) in vitro for 24 and 48 h. Treated seeds then were cultured on solid Murashige and Skoog (MS) media under controlled conditions. After a month, the length of the stomata was measured to study the effect of colchicine on stomata size. Cellular DNA content of the regenerated plants was measured by spectrophotometry. Flow cytometry was used for confirming the results obtained from stomata size measurement and spectrophotometry. Results suggested that treated plants have a fair amount of larger stomata, significantly in licorice plantlets that were treated with 0.1% colchicine for 24 h and safflower plantlets that were treated with 0.03%, 0.05% and 0.1% colchicine. Safflower DNA content in all treatments enhanced significantly, but in licorice only DNA content of plantlets that were treated with 0.05% colchicine for 24 h and 0.1%, 0.03% colchicine for 48 h found to be increased significantly. The morphological features of treated plantlets such as shoot and leaf thickness were found to be increased. Flow cytometry confirmed the previously mentioned results and suggested tetraploids in all treated safflower plantlets and licorice plantlets obtained from treatment with 0.08% of colchicine and mixoploids in licorice plantlets obtained from treatment with 0.1% of colchicine.
    03/2015; 111(1). DOI:10.1016/j.jgeb.2015.02.002


  • Address
    Tehrān, Iran
  • Head of Institution
    Dr.Mohammad Mehdi Tehranchi
  • Website
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

2307 Members View all

View all

Top publications last week by reads

Report number: 1
98 Reads
Journal of Food Composition and Analysis 06/2008; 21(4):300-305. DOI:10.1016/j.jfca.2007.11.007
77 Reads

Top Collaborating Institutions


This map visualizes which other institutions researchers from Shahid Beheshti University have collaborated with.

Rg score distribution

See how the RG Scores of researchers from Shahid Beheshti University are distributed.