306
1,752.29
5.73
839

Publication History View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical presentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particularly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing novel therapies.
    The international journal of biochemistry & cell biology 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TSC2 (Tuberous sclerosis complex 2) is an important tumour suppressor gene, mutations within which are linked to the development of tuberous sclerosis and implicated in multiple tumour types. TSC2 protein complexes with TSC1 and blocks the ability of the Rheb (Ras homolog enriched in brain) GTPase to activate mTOR (mammalian target of rapamycin), a crucial signal transducer which regulates protein synthesis and cell growth. Here, we report the characterisation of a novel isoform of TSC2 which is under direct control of the ligand-activated androgen receptor. TSC2 isoform A (TSC2A) is derived from an internal androgen-regulated alternative promoter and encodes a 508-amino acid cytoplasmic protein corresponding to the C-terminal region of full-length TSC2, lacking the interaction domain for TSC1 and containing an incomplete interaction domain required for Rheb inactivation. Expression of TSC2A is induced in response to androgens and full-length TSC2 is co-ordinately down-regulated, indicating an androgen-driven switch in TSC2 protein isoforms. In contrast to the well-characterised suppressive effect on cell proliferation of full-length TSC2 protein, both LNCaP and HEK293 cells over-expressing TSC2 isoform A proliferate more rapidly (measured by MTT assays) and have increased levels of cells in S-phase (measured by both Edu staining and FACS analysis). Our work indicates, for the first time, a novel role for this well-known tumour suppressor gene, which encodes an activator of cell proliferation in response to androgen stimulation.
    Oncotarget 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The challenges in limbal stem cell biology largely remain in the process of identification, isolation and expansion of these adult corneal epithelial stem cells of the eye. Due to the absence of specific limbal stem cell markers, identification and isolation of putative limbal stem cells is a complicated task. The side population assay is an isolation method that utilises the ability of stem cells to efflux the DNA-binding dye Hoechst 33342 (or other vital dyes) combined with dual wavelength flow cytometry and is a valuable strategy to enrich for limbal stem cells. This assay has been used to successfully identify stem/ progenitor cell populations in a variety of tissues and cell lines. Here we optimise this assay to identify SP cell populations in both primary human limbal epithelial cultures and in an established human corneal epithelial cell line. The limbal SP fraction showed higher expression of ATP-binding cassette sub-family G member 2 (ABCG2), ΔNp63-a common limbal stem cell marker and the stem cell marker Sox2 compared to non-SP cells (NSP).
    Stem cell reviews 10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Having excluded common structural, inflammatory and vascular causes of a spastic paraparesis, the diagnostic yield of further clinical investigations is low. Here, we show that testing for rare metabolic and genetic causes can have important implications for both the patient and their family.
    Practical Neurology 10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: IMPORTANCE Mitochondrial DNA (mtDNA) disorders have emerged as major causes of inherited neurologic disease. Despite being well recognized for more than 2 decades, the clinical presentation continues to broaden. The phenotypic heterogeneity is partly owing to different percentage levels of mutant mtDNA heteroplasmy in different tissues, but the factors influencing this are poorly understood. OBSERVATIONS This case report describes monozygotic male twins with ptosis, optic atrophy, and recent-onset intractable myoclonic epilepsy. The assessment of respiratory chain enzyme activities in the muscle from 1 twin revealed a severe and isolated defect involving mitochondrial complex I. Mitochondrial DNA sequencing revealed a pathogenic m.14487T>C MTND6 mutation, which was present at very high levels of heteroplasmy in muscle (84%) and lower levels in blood (15%), urinary epithelium (75%), and buccal mucosa (58%). Of particular interest, his identical twin was found to harbor very similar levels of the m.14487T>C mutation in his blood, urine, buccal mucosa, and hair follicle DNA samples, while the presence of low levels in the mother's tissues confirmed maternal transmission. CONCLUSIONS AND RELEVANCE It was shown that m14487T>C can also cause the unusual combination of optic atrophy, ptosis, and encephalomyopathy leading to intractable seizures. Near-identical heteroplasmy levels in different tissues in both siblings support a nuclear genetic mechanism controlling the tissue segregation of mtDNA mutations.
    JAMA neurology. 10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Do mtDNA mutations contribute to the aging process, or are they innocent bystanders? Ross et al. (2013) show that inherited mtDNA point mutations lead to a premature aging phenotype in mice and "prime" the maternal lineage, interacting with subsequent somatic mutations to cause brain malformations and shorten lifespan.
    Cell metabolism 10/2013; 18(4):463-464.
  • World journal for pediatric & congenital heart surgery. 10/2013; 4(4):457.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antiretroviral therapy has dramatically reduced mortality in human immunodeficiency virus (HIV) infection. In 1988, the suggestion that the first antiretroviral drug, zidovudine, was the potential cause of muscle pathology in HIV-infected persons resulted in structural and biochemical patient studies demonstrating acquired mitochondrial dysfunction. Assessment of subsequent nucleoside analog reverse transcriptase inhibitor (NRTI) antiretroviral drugs has indicated that mitochondria are a common target of NRTI toxicity in multiple tissues, leading to a wide variety of pathology ranging from lipodystrophy to neuropathy. Overwhelmingly, these complications have emerged during post-licensing human studies. Subsequent animal and in vitro studies have then elucidated the potential pathological mechanisms, suggesting that NRTI-associated mitochondrial toxicity arises principally from inhibition of the sole mitochondrial DNA (mtDNA) polymerase gamma, leading to a reduction in mtDNA content (depletion). Millions of patients have been treated with mitochondrially toxic NRTIs and these drugs remain the backbone of antiretroviral rollout in much of sub-Saharan Africa. Here we describe the 25-year history of antiretroviral associated mitochondrial pathology and critically review the strength of evidence linking clinical, histopathological, and molecular data. We discuss recently described novel mechanisms of NRTI-associated mitochondrial damage and whether or not recently licensed NRTIs may be considered free from mitochondrial toxicity.
    Toxicologic Pathology 09/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing interest in cancer stem cells (CSCs) and their role in cancer progression. Recently, CSCs have been identified in brain, skin, and intestinal tumors and it has been suggested that these CSCs are responsible for tumor growth and metastasis. In breast cancer fatality is often due to the development of metastatic disease (MBC). Almost 30% of early breast cancer patients eventually develop MBC and in 90% of these multi-drug resistance (MDR) occurs. This could be attributed to the presence of breast cancer stem cells (BCSCs). Epithelial-to-mesenchymal transition (EMT) is a process known to contribute to metastasis in cancer and it is mainly characterized by loss of E-cadherin expression. The TGF-β signaling pathway has an established role in promoting EMT by down-regulating E-cadherin via a number of transcription factors, such as Twist, Snail and Slug. EMT has also been reported to produce cells with stem cell-like properties. Definition of the exact molecular mechanisms that are involved in the generation of stem cells through EMT could lead to the identification of new potential therapeutic targets and enable the development of more efficient strategies for particular patient groups. In this review we discuss what is known about the relationship between EMT, BCSCs and MDR.
    Cancer Treatment Reviews 09/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show that neural crest stem cells affect mouse hair follicle development. During embryogenesis hair follicle induction is regulated by complex reciprocal and functionally redundant signals between epidermis and dermis, which remain to be fully understood. Canonical Wnt signalling is a hallmark of neural crest cells and also a prerequisite for hair follicle induction prior to hair placode formation in the epidermis. As neural crest stem cells invade the epidermis during early embryonic development we aimed at determining whether neural crest cells affect hair follicle development. To attenuate, but not silence, canonical Wnt signalling specifically in neural crest cells, we analyzed Wnt1-cre(+/-)::Pygo2(-/-) mice in which the β-catenin co-activator gene, Pygopus 2 (Pygo2), is deleted specifically in neural crest cells. Both, hair density and hair thickness were reduced in mutant mice. Furthermore, hair development was delayed and the relative ratio of hair types was affected. There was a decrease in zig-zag hairs and an increase in awl hairs. Mouse neural crest stem cells expressed ectodysplasin, an essential effector in the formation of zig-zag hair. Taken together, our data support the novel notion that neural crest cells are involved in the earliest stages of hair follicle development.
    Stem cell reviews 08/2013;
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.