827
4,058.75
4.91
1,360

Publication History View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alginates are comprised of mannuronic (M) and guluronic acid (G) and have been shown to inhibit enzyme activity. Pancreatic lipase is important in dietary triacylglycerol breakdown; reducing pancreatic lipase activity would reduce triacylglycerol breakdown resulting in lower amounts being absorbed by the body. Lipase activity in the presence of biopolymers was assessed by enzymatic assay using natural and synthetic substrates. Alginate inhibited pancreatic lipase by a maximum of 72.2% (±4.1) with synthetic substrate (DGGR) and 58.0% (±9.7) with natural substrate. High-G alginates from Laminaria hyperborea seaweed inhibited pancreatic lipase to a significantly higher degree than High-M alginates from Lessonia nigrescens, showing that inhibition was related to alginate structure. High-G alginates are effective inhibitors of pancreatic lipase and are used in the food industry at low levels. They could be included at higher levels in foods without altering organoleptic qualities, potentially reduce the uptake of dietary triacylglycerol aiding in weight management.
    Food Chemistry 03/2014; 146:479-84.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rearrangements involving the RUNX1 gene account for approximately 15% of balanced translocations in therapy-related acute myeloid leukemia (t-AML) patients and are one of the most common genetic abnormalities observed in t-AML. Drugs targeting the topoisomerase II (TOP2) enzyme are implicated in t-AML; however, the mechanism is not well understood and to date a single RUNX1-RUNX1T1 t-AML breakpoint junction sequence has been published. Here we report an additional five breakpoint junction sequences from t-AML patients with the RUNX1- RUNX1T1 translocation. Using a leukemia cell line model, we show that TOP2 beta (TOP2B) is required for induction of RUNX1 chromosomal breaks by the TOP2 poison etoposide and that, while TOP2 alpha (TOP2A) and TOP2B proteins are both present on RUNX1 and RUNX1T1 chromatin, only the TOP2B enrichment reached significance following etoposide exposure at a region on RUNX1 where translocations occur. Furthermore, we demonstrate that TOP2B influences the separation between RUNX1 and two translocation partners (RUNX1T1 and EVI) in the nucleus of lymphoid cells. Specifically, we identified a TOP2B-dependent increase in the number of nuclei displaying juxtaposed RUNX1 and RUNX1T1 loci following etoposide treatment. © 2013 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 02/2014; 53(2):117-28.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selenium (Se) is an essential micronutrient that is incorporated into selenoproteins. Although epidemiological studies suggest that low Se intake is associated with increased risk of various cancers, the results of supplementation trials have been confusing. These conflicting results may be due to different baseline Se status and/or genetic factors. In addition, mechanistic links between Se intake, selenoproteins and carcinogenesis are not clear. In this article, we discuss the functional significance of single-nucleotide polymorphisms (SNP) in selenoprotein genes and the evidence as to whether or not they influence risk of colorectal, prostate, lung or breast cancers. Both in vitro and in vivo studies have shown that a small number of SNPs in genes encoding glutathione peroxidases 1 and 4, selenoprotein P, selenoprotein S and 15-kDa selenoprotein have functional consequences. Data from case-control studies suggest that a variant at codon 198 in glutathione peroxidase 1 influences the effect of Se status on prostate cancer and risk, and it has also been associated with breast cancer and lung cancer risk, whereas variants in glutathione peroxidase 4, selenoprotein P and selenoprotein S may influence the risk of colorectal cancer. In addition, the results of gene microarray (transcriptomic) studies have identified novel selenoprotein biomarkers of Se status and novel downstream Se-targeted pathways. The work highlights the need to take baseline Se status and genetic factors into account in the design of future intervention trials.
    Cancer treatment and research 01/2014; 159:145-166.
  • [Show abstract] [Hide abstract]
    ABSTRACT: H2O2 can cause oxidative damage associated with age-related diseases such as diabetes and cancer but is also used to initiate diverse responses, including increased antioxidant gene expression. Despite significant interest, H2O2-signaling mechanisms remain poorly understood. Here, we present a mechanism for the propagation of an H2O2 signal that is vital for the adaptation of the model yeast, Schizosaccharomyces pombe, to oxidative stress. Peroxiredoxins are abundant peroxidases with conserved antiaging and anticancer activities. Remarkably, we find that the only essential function for the thioredoxin peroxidase activity of the Prx Tpx1(hPrx1/2) in resistance to H2O2 is to inhibit a conserved thioredoxin family protein Txl1(hTxnl1/TRP32). Thioredoxins regulate many enzymes and signaling proteins. Thus, our discovery that a Prx amplifies an H2O2 signal by driving the oxidation of a thioredoxin-like protein has important implications, both for Prx function in oxidative stress resistance and for responses to H2O2.
    Cell Reports 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microsporidia are an abundant group of obligate intracellular parasites of other eukaryotes, including immuno-compromised humans, but the molecular basis of their intracellular lifestyle and pathobiology are poorly understood. New genomes from a taxonomically broad range of microsporidians, complemented by published expression data, provide an opportunity for comparative analyses to identify conserved and lineage-specific patterns of microsporidian genome evolution that have underpinned this success. In this study, we infer that a dramatic bottleneck in the last common microsporidian ancestor (LCMA) left a small conserved core of genes that was subsequently embellished by gene family expansion driven by gene acquisition in different lineages. Novel expressed protein families represent a substantial fraction of sequenced microsporidian genomes and are significantly enriched for signals consistent with secretion or membrane location. Further evidence of selection is inferred from the gain and reciprocal loss of functional domains between paralogous genes, for example affecting transport proteins. Gene expansions among transporter families preferentially affect those that are located on the plasma membrane of model organisms, consistent with recruitment to plug conserved gaps in microsporidian biosynthesis and metabolism. Core microsporidian genes shared with other eukaryotes are enriched in orthologues that, in yeast, are highly expressed, highly connected and often essential, consistent with strong negative selection against further reduction of the conserved gene set since the LCMA. Our study reveals that microsporidian genome evolution is a highly dynamic process that has balanced constraint, reductive evolution and genome expansion during adaptation to an extraordinarily successful obligate intracellular lifestyle.
    Genome Biology and Evolution 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a beta-1,4-linked xylose polysaccharide that is decorated with alpha-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan alpha-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four domain protein in which the active site, comprising a pocket that abuts a cleft like structure, is housed in the second domain that adopts a TIM barrel fold. The third domain, a five helical bundle, and the C-terminal beta-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, and the steric restriction imposed by the C-terminal domain of protomer 1 at the opening of the substrate binding cleft in protomer 2 (and vice versa), the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan.
    Journal of Biological Chemistry 11/2013;
  • Nature Structural & Molecular Biology 11/2013; 20(11):1237-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fertilising sperm triggers a transient Ca(2+) increase that releases eggs from cell cycle arrest in the vast majority of animal eggs. In vertebrate eggs, Erp1, an APC/C(cdc20) inhibitor, links release from metaphase II arrest with the Ca(2+) transient and its degradation is triggered by the Ca(2+)-induced activation of CaMKII. By contrast, many invertebrate groups have mature eggs that arrest at metaphase I, and these species do not possess the CaMKII target Erp1 in their genomes. As a consequence, it is unknown exactly how cell cycle arrest at metaphase I is achieved and how the fertilisation Ca(2+) transient overcomes the arrest in the vast majority of animal species. Using live-cell imaging with a novel cyclin reporter to study cell cycle arrest and its release in urochordate ascidians, the closest living invertebrate group to the vertebrates, we have identified a new signalling pathway for cell cycle resumption in which CaMKII plays no part. Instead, we find that the Ca(2+)-activated phosphatase calcineurin (CN) is required for egg activation. Moreover, we demonstrate that parthenogenetic activation of metaphase I-arrested eggs by MEK inhibition, independent of a Ca(2+) increase, requires the activity of a second egg phosphatase: PP2A. Furthermore, PP2A activity, together with CN, is required for normal egg activation during fertilisation. As ascidians are a sister group of the vertebrates, we discuss these findings in relation to cell cycle arrest and egg activation in chordates.
    Development 11/2013; 140(22):4583-93.
  • Current Opinion in Pharmacology 10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several proto-oncogenes and tumor suppressors regulate the production of ribosomes. Ribosome biogenesis is a major consumer of cellular energy, and defects result in p53 activation via repression of mouse double minute 2 (MDM2) homolog by the ribosomal proteins RPL5 and RPL11. Here, we report that RPL5 and RPL11 regulate p53 from the context of a ribosomal subcomplex, the 5S ribonucleoprotein particle (RNP). We provide evidence that the third component of this complex, the 5S rRNA, is critical for p53 regulation. In addition, we show that the 5S RNP is essential for the activation of p53 by p14(ARF), a protein that is activated by oncogene overexpression. Our data show that the abundance of the 5S RNP, and therefore p53 levels, is determined by factors regulating 5S complex formation and ribosome integration, including the tumor suppressor PICT1. The 5S RNP therefore emerges as the critical coordinator of signaling pathways that couple cell proliferation with ribosome production.
    Cell Reports 10/2013;
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.