Publication History View all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two closely related navy bean genotypes, Albion and Voyager. In this study, these two genotypes were grown under controlled fertilization conditions and the Zn concentration of various plant parts was determined. The two genotypes had similar levels of Zn in their leaves and pods but Voyager had 52% more Zn in its seeds than Albion. RNA was sequenced from developing pods of both genotypes. Transcriptome analysis of these genotypes identified 27,198 genes in the developing bean pods, representing 86% of the genes in the P. vulgaris genome (v 1.0 DOE-JGI and USDA-NIFA). Expression was detected in 18,438 genes. A relatively small number of genes (381) were differentially expressed between Albion and Voyager. Differentially expressed genes included three genes potentially involved in Zn transport, including zinc-regulated transporter, iron regulated transporter like (ZIP), zinc-induced facilitator (ZIF) and heavy metal associated (HMA) family genes. In addition 12,118 SNPs were identified between the two genotypes. Of the gene families related to Zn and/or Fe transport, eleven genes were found to contain SNPs between Albion and Voyager.
    PLoS ONE 09/2015; 10(9):e0137157. DOI:10.1371/journal.pone.0137157
  • Source
    Frontiers in Plant Science 05/2015; 6. DOI:10.3389/fpls.2015.00375
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize.
    PLoS ONE 02/2015; 10(2):e0117340. DOI:10.1371/journal.pone.0117340


  • Address
    Aruna Asaf Ali Marg, JNU Campus, 110067, New Delhi, Delhi, India
  • Head of Institution
    Prof. Akhilesh K. Tyagi
  • Website
  • Phone
  • Fax
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

138 Members View all

Top Collaborating Institutions


This map visualizes which other institutions researchers from National Institute of Plant Genome Research have collaborated with.

Rg score distribution

See how the RG Scores of researchers from National Institute of Plant Genome Research are distributed.