Departments View all

Insititute of Informatics and Telecommunications
94
Total Impact Points
59
Members
Institute of Materials Science (IMS)
1,943
Total Impact Points
54
Members
Institute of Biosciences and Applications (IB-A)
227
Total Impact Points
47
Members

Publication History View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low back pain is the most common musculoskeletal problem and the single most common cause of disability, often attributed to degeneration of the intervertebral disc. Lack of effective treatment is directly related to our limited understanding of the pathways responsible for maintaining disc health. While transcriptional analysis has permitted initial insights into the biology of the intervertebral disc, complete proteomic characterization is required. We therefore employed liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) protein/peptide separation and mass spectrometric analyses to characterize the protein content of intervertebral discs from skeletally mature wild-type mice. A total of 1360 proteins were identified and categorized using PANTHER. Identified proteins were primarily intracellular/plasma membrane (35%), organelle (30%), macromolecular complex (10%), extracellular region (9%). Molecular function categorization resulted in three distinct categories: catalytic activity (33%), binding (molecule interactions) (29%), and structural activity (13%). To validate our list, we confirmed the presence of 14 of 20 previously identified IVD-associated markers, including matrix proteins, transcriptional regulators, and secreted proteins. Immunohistochemical analysis confirmed distinct localization patterns of select protein with the intervertebral disc. Characterization of the protein composition of healthy intervertebral disc tissue is an important first step in identifying cellular processes and pathways disrupted during aging or disease progression.
    PLoS ONE 02/2015; 10(2):e0117807. DOI:10.1371/journal.pone.0117807
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = -5.6, p = 0.07), however this association was not significant in the 2001 sample (b = -1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = -0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample.
    PLoS ONE 12/2014; 9(12):e113760. DOI:10.1371/journal.pone.0113760
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intervertebral disc (IVD) is one of the largest avascular organs in vertebrates. The nucleus pulposus (NP), a highly hydrated and proteoglycan-enriched tissue, forms the inner portion of the IVD. The NP is surrounded by a multi-lamellar fibrocartilaginous structure, the annulus fibrosus (AF). This structure is covered superior and inferior side by cartilaginous endplates (CEP). The NP is a unique tissue within the IVD as it results from the differentiation of notochordal cells, whereas, AF and CEP derive from the sclerotome. The hypoxia inducible factor-1α (HIF-1α) is expressed in NP cells but its function in NP development and homeostasis is largely unknown. We thus conditionally deleted HIF-1α in notochordal cells and investigated how loss of this transcription factor impacts NP formation and homeostasis at E15.5, birth, 1 and 4 months of age, respectively. Histological analysis, cell lineage studies, and TUNEL assay were performed. Morphologic changes of the mutant NP cells were identified as early as E15.5, followed, postnatally, by the progressive disappearance and replacement of the NP with a novel tissue that resembles fibrocartilage. Notably, lineage studies and TUNEL assay unequivocally proved that NP cells did not transdifferentiate into chondrocyte-like cells but they rather underwent massive cell death, and were completely replaced by a cell population belonging to a lineage distinct from the notochordal one. Finally, to evaluate the functional consequences of HIF-1α deletion in the NP, biomechanical testing of mutant IVD was performed. Loss of the NP in mutant mice significantly reduced the IVD biomechanical properties by decreasing its ability to absorb mechanical stress. These findings are similar to the changes usually observed during human IVD degeneration. Our study thus demonstrates that HIF-1α is essential for NP development and homeostasis, and it raises the intriguing possibility that this transcription factor could be involved in IVD degeneration in humans.
    PLoS ONE 10/2014; 9(10):e110768. DOI:10.1371/journal.pone.0110768

Information

  • Address
    Patriarchou Grigoriou & Neapoleos Str., 15310, Athens, Aghia Paraskevi, Greece
  • Head of Institution
    Nick K Kanellopoulos
  • Website
    http://www.demokritos.gr
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

406 Members View all

View all

Top publications last week by downloads

 
Chemical Communications 03/2010; 46(10):1766-8. DOI:10.1039/b922081j
51 Downloads
 
Applied Catalysis B Environmental 08/2012; 125:331-349. DOI:10.1016/j.apcatb.2012.05.036
49 Downloads

Top Collaborating Institutions

Collaborations

This map visualizes which other institutions researchers from National Center for Scientific Research Demokritos have collaborated with.

Rg score distribution

See how the RG Scores of researchers from National Center for Scientific Research Demokritos are distributed.