Departments View all

Total Impact Points
Total Impact Points
Total Impact Points

Recent Publications View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD) but may also be important in type 1 diabetes (T1D), and could potentially explain the reduced incidence of T1D in mice receiving a gluten-free (GF) diet. The direct in vivo effect of gluten on innate cells, and particularly dendritic cells (DC) is not sufficiently clarified. Therefore, we wished to investigate the innate cell populations of spontaneous diabetic NOD mice and healthy BALB/c mice kept on a GF or a standard (STD) gluten containing diet. We studied, by flow cytometry and reverse transcription-quantitative polymerase chain reaction (qRT-PCR), if dietary gluten induces changes in the activation of DCs and distribution of selected innate cells in lymphoid, pancreatic and intestinal tissues in BALB/c and NOD mice. We found that a GF diet increased the percentage of macrophages in BALB/c spleen and of CD11c+ DCs in BALB/c and NOD spleen. Strictly gluten-free (SGF) diet increased the percentage of CD103+ DCs in BALB/c mice and decreased percentages of CD11b+ DCs in mesenteric and pancreatic lymph nodes in BALB/c mice. SGF diet in BALB/c mice also decreased DC expression of CD40, CCR7 and MHC-II in pancreatic lymph nodes. In conclusion, GF diet changes the composition of the innate immune system in BALB/c and NOD mice and increases expression of DC activation markers in NOD mice. These results contribute to the explanation of the low diabetes incidence in GF NOD mice. This mechanism may be important in development of type 1 diabetes, celiac disease and non-celiac gluten sensitivity.
    PLoS ONE 03/2015; 10(3):e0118618. DOI:10.1371/journal.pone.0118618
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Susceptibility to type 1 diabetes (T1D) is strongly associated with MHC class II molecules, particularly HLA-DQ8 (DQ8: DQA1*03:01/DQB1*03:02). Monitoring T1D-specific T cell responses to DQ8-restricted epitopes may be key to understanding the immunopathology of the disease. In this study, we examined DQ8-restricted T cell responses to glutamic acid decarboxylase 65 (GAD65) using DQ8 tetramers. We demonstrated that GAD65121-140 and GAD65250-266 elicited responses from DQ8+ subjects. Circulating CD4+ T cells specific for these epitopes were detected significantly more often in T1D patients than in healthy individuals after in vitro expansion. T cell clones specific for GAD65121-140 and GAD65250-266 carried a Th1-dominant phenotype, with some of the GAD65121-140-specific T cell clones producing IL-17. GAD65250-266-specific CD4+ T cells could also be detected by direct ex vivo staining. Analysis of unmanipulated peripheral blood mononuclear cells (PBMCs) revealed that GAD65250-266-specific T cells could be found in both healthy and diabetic individuals but the frequencies of specific T cells were higher in subjects with type 1 diabetes. Taken together, our results suggest a proinflammatory role for T cells specific for DQ8-restricted GAD65121-140 and GAD65250-266 epitopes and implicate their possible contribution to the progression of T1D.
    PLoS ONE 11/2014; 9(11):e112882. DOI:10.1371/journal.pone.0112882
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence of regulatory T cells (Tregs) as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+CD25highCD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+CD25highCD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH)2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH)2D3 and TX527 promote the induction of IL-10-producing CD4+CD25highCD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes.
    PLoS ONE 10/2014; 9(10):e109194. DOI:10.1371/journal.pone.0109194


  • Address
    9420 Athena Cir, 92037, La Jolla, CA, United States
  • Head of Institution
    Dr. Mitchell Kronenberg
  • Website
  • Phone
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

158 Members View all

View all

Top publications last week by reads

Current Protein and Peptide Science 09/2007; 8(4):329-51. DOI:10.2174/138920307781369427
32 Reads
18 Reads

Top Collaborating Institutions


This map visualizes which other institutions researchers from La Jolla Institute for Allergy & Immunology have collaborated with.

Rg score distribution

See how the RG Scores of researchers from La Jolla Institute for Allergy & Immunology are distributed.