Publication HistoryView all

  • Source

    General, Applied and Systems Toxicology, 12/2009; , ISBN: 9780470744307
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The two-stage neuroinflammatory process, containment and progression, proposed to underlie neurodegeneration may predicate on systemic inflammation arising from the gastrointestinal tract. Helicobacter infection has been described as one switch in the pathogenic-circuitry of idiopathic parkinsonism (IP): eradication modifies disease progression and marked deterioration accompanies eradication-failure. Moreover, serum Helicobacter-antibody-profile predicts presence, severity and progression of IP. Slow gastrointestinal-transit precedes IP-diagnosis and becomes increasingly-apparent after, predisposing to small-intestinal bacterial-overgrowth (SIBO). Although IP is well-described as a systemic illness with a long prodrome, there has been no comprehensive overview of the blood profile. Here, it is examined in relation to Helicobacter status and lactulose-hydrogen-breath-testing for SIBO. A robust finding of reduced lymphocyte count in 126 IP-probands and 79 spouses (without clinically-definite IP), compared with that in 381 controls (p < 0.001 in each case), was not explained by Helicobacter-status or breath-hydrogen. This complements a previous report that spouses were 'down-the-pathway' to 'clinically-definite' disease. In 205 other controls without clinically-definite IP, there were strong associations between sporadic cardinal features and immunoglobulin class concentration, not explained by Helicobacter-status. Premonitory states for idiopathic parkinsonism associated with relative lymphopenia, higher serum immunoglobulin concentrations and evidence of enteric-nervous-system damage may prove viral in origin. Although only 8% of the above 79 spouses were urea-breath-test-positive for Helicobacter, all 8 spouses with clinically-definite IP were (p < 0.0001). Transmission of a 'primer' to a Helicobacter-colonised recipient might result in progression to the diagnostic threshold. Twenty-five percent of the 126 probands were seropositive for anti-nuclear autoantibody. In 20 probands, monitored before and serially after anti-Helicobacter therapy, seropositivity marked a severe hypokinetic response (p = 0.03). It may alert to continuing infection, even at low-density. Hyperhomocysteinemia is a risk factor for dementia and depression. Serum homocysteine exceeded the target in 43% of the 126 IP-probands. It was partially explained by serum B12 (12% variance, p < 0.001), but not by Helicobacter-status (gastric-atrophy uncommon in IP) or levodopa treatment. Immune-inflammatory activation increases homocysteine production. Since an estimated 60% of probands are hydrogen-breath-test positive, SIBO, with its increased bacterial utilisation of B12, is a likely cause. Thus, two prognostic indicators in established IP fit with involvement of Helicobacter and SIBO.
    Gut Pathogens 11/2009; 1(1):20. DOI:10.1186/1757-4749-1-20
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxynitrite is a reactive cytotoxic species, capable of nitrating tyrosine residues to form 3-nitrotyrosine. Little is known about the formation and loss of nitrated proteins in vivo. We have measured nitrated proteins, by enzyme-linked immunosorbent assay, in rat skin after exposure to peroxynitrite. Peroxynitrite (100-200 nmol site(-1)) was injected into the skin of anesthetized rats. At the highest dose 78.6 +/- 9.5 pmol mg(-1) protein of nitrated BSA equivalents were measured at 4 h and a significant increase was observed for 24 h after administration in skin samples. The loss of nitrated proteins from skin appeared biphasic with an initial (t(1/2) = 2 h) and slower loss (t(1/2) = 22 h). A major nitrated protein was identified as albumin by Western blot analysis. The data demonstrate that a single exposure to peroxynitrite can lead to the presence of nitrated proteins in skin for at least 24 h. The sustained presence of nitrated proteins may influence the inflammatory process in skin disease.
    Biochemical and Biophysical Research Communications 10/1999; 262(3):781-6. DOI:10.1006/bbrc.1999.1309
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.
View all

Top publications last week by reads

Journal of pharmacological and toxicological methods 08/2011; 64(2):187-95. DOI:10.1016/j.vascn.2011.08.003
1 Read