74
369.36
4.99
226

Publication History View all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Rab proteins are a large family of GTP-binding proteins that regulate cellular membrane traffic and organelle identity. Rab proteins cycle between association with membranes and binding to RabGDI. Bound on membranes, each Rab has a very specific cellular location and it is this remarkable degree of specificity with which Rab GTPases recognize distinct subsets of intracellular membranes that forms the basis of their ability to act as key cellular regulators, determining the recruitment of downstream effectors to the correct membrane at the correct time. The molecular mechanisms controlling Rab localization remain poorly understood. Here, we present a fluorescence-based assay to investigate Rab GTPase membrane extraction and delivery by RabGDI. Using EGFP-Rab fusion proteins the amount of Rab:GDI complex obtained by GDI extraction of Rab proteins from HEK293 membranes could be determined, enabling control of complex concentration. Subsequent partitioning of the Rab GTPases into vesicles made up of artificial binary lipid mixtures showed for the first time, that the composition of the target membrane plays a key role in the localization of Rab proteins by sensing the stored curvature elastic energy in the membrane.
    Molecular Membrane Biology 07/2013; 30(4):303-14.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle weakness in chronic obstructive pulmonary disease (COPD) carries a poor prognosis, therefore a non-invasive marker of this process could be useful. Reduced expression of muscle-specific microRNA (myomiRs) in quadriceps muscle in patients with COPD is associated with skeletal muscle weakness and changes in muscle fibre composition. Circulating exosomal miRNAs can be measured in blood, making them candidate biomarkers of biopsy phenotype. To determine whether plasma myomiR levels were associated with fibre size or fibre proportion, we measured myomiRs in plasma from patients with COPD and healthy controls. 103 patients with COPD and 25 age-matched controls were studied. Muscle-specific miRNA was elevated in the plasma of patients with COPD and showed distinct patterns. Specifically, miR-1 was inversely associated with fat-free mass in the cohort, whereas levels of miR-499 were more directly associated with strength and quadriceps type I fibre proportion. Two miRs not restricted to muscle in origin (miR-16 and miR-122) did not differ between patients and controls. Plasma miR-499 was also associated with muscle nuclear factor κB p50 but not p65 in patients with early COPD whereas plasma inflammatory cytokines were associated with miR-206 in patients with more advanced disease. Plasma levels of individual myomiRs are altered in patients with COPD but alone do not predict muscle fibre size or proportion. Our findings are consistent with an increase in muscle wasting and turnover associated with the development of skeletal muscle dysfunction and fibre-type shift in patients with stable COPD.
    Thorax 06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Choroideremia (CHM) is an X-linked retinal degeneration of photoreceptors, the retinal pigment epithelium (RPE) and choroid caused by loss of function mutations in the CHM/REP1 gene that encodes Rab escort protein 1. As a slowly progressing monogenic retinal degeneration with a clearly identifiable phenotype and a reliable diagnosis, CHM is an ideal candidate for gene therapy. We developed a serotype 2 adeno-associated viral vector AAV2/2-CBA-REP1, which expresses REP1 under control of CMV-enhanced chicken β-actin promoter (CBA) augmented by a Woodchuck hepatitis virus post-transcriptional regulatory element. We show that the AAV2/2-CBA-REP1 vector provides strong and functional transgene expression in the D17 dog osteosarcoma cell line, CHM patient fibroblasts and CHM mouse RPE cells in vitro and in vivo. The ability to transduce human photoreceptors highly effectively with this expression cassette was confirmed in AAV2/2-CBA-GFP transduced human retinal explants ex vivo. Electroretinogram (ERG) analysis of AAV2/2-CBA-REP1 and AAV2/2-CBA-GFP-injected wild-type mouse eyes did not show toxic effects resulting from REP1 overexpression. Subretinal injections of AAV2/2-CBA-REP1 into CHM mouse retinas led to a significant increase in a- and b-wave of ERG responses in comparison to sham-injected eyes confirming that AAV2/2-CBA-REP1 is a promising vector suitable for choroideremia gene therapy in human clinical trials.
    Journal of Molecular Medicine 06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinal pigment epithelium (RPE) is a pigmented monolayer of cells lying between the photoreceptors and a layer of fenestrated capillaries, the choriocapillaris. Choroideremia (CHM) is an X-linked progressive degeneration of these three layers caused by the loss of function of Rab Escort protein-1 (REP1). REP1 is involved in the prenylation of Rab proteins, key regulators of membrane trafficking. To study the pathological consequences of chronic disruption of membrane traffic in the RPE we used a cell type-specific knock-out mouse model of the disease, where the gene is deleted only in pigmented cells (). Transmission electron microscopy (TEM) was used to quantitate the melanosome distribution in the RPE and immunofluorescent staining of rhodopsin was used to quantitate phagocytosed rod outer segments in retinal sections. The ultrastructure of the RPE and Bruch's membrane at different ages was characterised by TEM to analyse age-related changes occurring as a result of defects in membrane traffic pathways. gene knockout in RPE cells resulted in reduced numbers of melanosomes in the apical processes and delayed phagosome degradation. In addition, the RPE accumulated pathological changes at 5-6 months of age similar to those observed in 2-year old controls. These included the intracellular accumulation of lipofuscin-containing deposits, disorganised basal infoldings and the extracellular accumulation of basal laminar and basal linear deposits. The phenotype of the mice suggests that loss of the gene causes premature accumulation of features of aging in the RPE. Furthermore, the striking similarities between the present observations and some of the phenotypes reported in age-related macular degeneration (AMD) suggest that membrane traffic defects may contribute to the pathogenesis of AMD.
    PLoS ONE 05/2013; 8(2):e57769.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have determined the molar proportions of the MUC5AC and MUC6 mucus glycoproteins (mucins) in mucus from the normal and pathological human gastric antrum, using a least-squares minimisation analysis applied to amino acid compositions. We noted that the content of MUC5AC mucin in mucus from individuals without gastro-duodenal disease was very high, suggesting that the integrity and barrier properties of the adherent gastric mucus layer are normally maintained by building-block structures formed from this mucin alone. We observed that the molar content of MUC6 mucin doubled (without significance) in mucus from patients with duodenal ulcer, and increased five times (with high significance) in mucus from patients with gastric ulcer, when compared to that in mucus from individuals without gastro-duodenal disease.
    Analytical Biochemistry 04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling regulated by Rho small GTPases plays a pivotal role in cell migration, cell attachment to substratum or to their neighbors among other functions. Concerted efforts have focused on understanding how different GTPases are activated by specific stimuli and which regulator is responsible for the spatio-temporal control of their activity at particular intracellular sites. We have recently described the role of a scaffold protein, Ajuba, in adherens junction maintenance via direct stabilization of activated small GTPase Rac1 at cell-cell contacts. Ajuba binds to both active and inactive forms of Rac1. Upon junction formation, Rac1 activation initiates a positive feedback loop leading to Ajuba phosphorylation and Ajuba-mediated retention of activated Rac1 at junctions. Thus, cytoskeletal proteins may have a dual role to provide a scaffolding platform and dynamically modulate small GTPases function at a specific place, irrespective of their ability to interact with active and inactive forms. Here we discuss similar mechanisms via which cytoskeletal proteins can facilitate cellular processes downstream of Rho proteins by increasing their affinity to activated GTPases.
    Cell adhesion & migration 04/2013; 7(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an evolutionarily conserved process that enables catabolic and degradative pathways. These pathways commonly depend on vesicular transport controlled by Rabs, small GTPases inactivated by TBC/RabGAPs. The Rac1 effector TBC/RabGAP Armus (TBC1D2A) is known to inhibit Rab7, a key regulator of lysosomal function. However, the precise coordination of signaling and intracellular trafficking that regulates autophagy is poorly understood. We find that overexpression of Armus induces the accumulation of enlarged autophagosomes, while Armus depletion significantly delays autophagic flux. Upon starvation-induced autophagy, Rab7 is transiently activated. This spatiotemporal regulation of Rab7 guanosine triphosphate/guanosine diphosphate cycling occurs by Armus recruitment to autophagosomes via interaction with LC3, a core autophagy regulator. Interestingly, autophagy potently inactivates Rac1. Active Rac1 competes with LC3 for interaction with Armus and thus prevents its appropriate recruitment to autophagosomes. The precise coordination between Rac1 and Rab7 activities during starvation suggests that Armus integrates autophagy with signaling and endocytic trafficking.
    Developmental Cell 04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of episomally maintained DNA vectors to genetically modify dividing cells efficiently and stably, without the risk of integration-mediated genotoxicity, should prove to be a valuable tool in genetic research. In this study, we demonstrate the utility of Scaffold/Matrix Attachment Region (S/MAR) DNA vectors to model the restoration of a functional wild-type copy of the gene folliculin (FLCN) implicated in the renal cancer Birt-Hogg-Dubé (BHD). Inactivation of FLCN has been shown to be involved in the development of sporadic renal neoplasia in BHD. S/MAR-modified BHD tumor cells (named UOK257-FS) show restored stable FLCN expression and have normalized downstream TGFβ signals. We demonstrate that UOK257-FS cells show a reduced growth rate in vitro and suppression of xenograft tumor development in vivo, compared with the original FLCN-null UOK257 cell line. In addition, we demonstrate that mTOR signaling in serum-starved FLCN-restored cells is differentially regulated compared with the FLCN-deficient cell. The novel UOK257-FS cell line will be useful for studying the signaling pathways affected in BHD pathogenesis. Significantly, this study demonstrates the suitability of S/MAR vectors to successfully model the functional expression of a therapeutic gene in a cancer cell line and will aid the identification of novel cancer markers for diagnosis and therapy.Molecular Therapy-Nucleic Acids (2013) 2, e115; doi:10.1038/mtna.2013.40; published online 13 August 2013.
    Molecular therapy. Nucleic acids. 01/2013; 2:e115.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G-quadruplexes (G4s) are four-stranded DNA secondary structures, which are involved in a diverse range of biological processes. Although the anti-cancer potential of G4s in oncogene promoters has been thoroughly investigated, the functions of promoter G4s in non-cancer-related genes are not well understood. We have explored the possible regulatory roles of promoter G4s in cardiac function-related genes using both computational and a wide range of experimental approaches. According to our bioinformatics results, it was found that potential G4-forming sequences are particularly enriched in the transcription regulatory regions (TRRs) of cardiac function-related genes. Subsequently, the promoter of human cardiac troponin I (TnIc) was chosen as a model, and G4s found in this region were subjected to biophysical characterisations. The chromosome 19 specific minisatellite G4 sequence (MNSG4) and near transcription start site (TSS) G4 sequence (-80 G4) adopt anti-parallel and parallel structures respectively in 100 mM KCl, with stabilities comparable to those of oncogene G4s. It was also found that TnIc G4s act cooperatively as enhancers in gene expression regulation in HEK293 cells, when stabilised by a synthetic G4-binding ligand. This study provides the first evidence of the biological significance of promoter G4s in cardiac function-related genes. The feasibility of using a single ligand to target multiple G4s in a particular gene has also been discussed.
    PLoS ONE 01/2013; 8(1):e53137.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE) and Second Harmonic signal Generation (SHG). No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (B(SHG)) alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression.
    PLoS ONE 01/2013; 8(2):e56136.
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.