Departments View all

Department of Plant Biotechnology
117
Total Impact Points
13
Members
Department of Bioresources
7
Total Impact Points
8
Members

Publication History View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms. We investigated the application of a transcriptomics-based assay for estrogenic and anti-androgenic chemicals with zebrafish embryos. Two reference compounds, 17α-ethinylestradiol and flutamide, were tested to evaluate the effects on development and the transcriptome after 48h-exposures. Comparison of the transcriptome response with other estrogenic and anti-androgenic compounds (genistein, bisphenol A, methylparaben, linuron, prochloraz, propanil) showed commonalities and differences in regulated pathways, enabling us to classify the estrogenic and anti-androgenic potencies. This demonstrates that different mechanism of ED can be assessed already in fish embryos.
    Reproductive Toxicology 09/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one; PZ-51, DR-3305), is an organoselenium compound with glutathione peroxidase (GPx)-like, thiol-dependent, hydroperoxide reducing activity. As an enzyme mimic for activity of the selenoenzyme GPx, this compound has proved to be highly useful in research on mechanisms in redox biology. Furthermore, the reactivity of ebselen with protein thiols has helped to identify novel, selective targets for inhibitory actions on several enzymes of importance in pharmacology and toxicology. Importantly, the selenium in ebselen is not released and thus is not bioavailable, ebselen metabolites being excreted in bile and urine. As a consequence, initial concerns about selenium toxicity, fortunately, were unfounded. Potential applications in medical settings have been explored, notably in brain ischemia and stroke. More recently, there has been a surge in interest as new medical applications have been taken into consideration. The first publication on the biochemical effects of ebselen appeared 30 years ago (Müller et al. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol. 1984;33:3235-9), which prompted the authors to retrace the early development from their perspective. It is a fascinating example of fruitful interaction between research-oriented industry and academia.
    Biochemical pharmacology 09/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radio frequency impedance spectroscopy (RFIS) is a robust method for the determination of cell biomass during fermentation. RFIS allows non-invasive in-line monitoring of the passive electrical properties of cells in suspension and can distinguish between living and dead cells based on their distinct behavior in an applied radio frequency field. We used continuous in situ RFIS to monitor batch-cultivated plant suspension cell cultures in stirred-tank bioreactors and compared the in-line data to conventional off-line measurements. RFIS-based analysis was more rapid and more accurate than conventional biomass determination, and was sensitive to changes in cell viability. The higher resolution of the in-line measurement revealed subtle changes in cell growth which were not accessible using conventional methods. Thus, RFIS is well suited for correlating such changes with intracellular states and product accumulation, providing unique opportunities for employing systems biotechnology and process analytical technology approaches to increase product yield and quality.
    Biotechnology Journal 08/2013;

Information

  • Address
    Forckenbeckstraße 6 , 52074 Aachen , Aachen, Germany
  • Head of Institution
    Prof. Dr. Rainer Fischer
  • Website
    http://www.ime.fraunhofer.de/
  • Phone
    +49 241 6085-12020
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

66 Members View all

Top Collaborating Institutions

Collaborations

This map visualizes which other institutions researchers from Fraunhofer Institute for Molecular Biology and Applied Ecology IME have collaborated with.

Rg score distribution

See how the RG Scores of researchers from Fraunhofer Institute for Molecular Biology and Applied Ecology IME are distributed.