Atlanta, GA, United States

Departments View all

Total Impact Points
Total Impact Points
Total Impact Points

Recent Publications View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an implementation of τ-EO for quadratic unconstrained binary optimization (QUBO) problems. To this end, we transform modify QUBO from its conventional Boolean presentation into a spin glass with a random external field on each site. These fields tend to be rather large compared to the typical coupling, presenting EO with a challenging two-scale problem, exploring smaller differences in couplings effectively while sufficiently aligning with those strong external fields. However, we also find a simple solution to that problem that indicates that those external fields apparently tilt the energy landscape to a such a degree such that global minima become more easy to find than those of spin glasses without (or very small) fields. We explore the impact of the weight distribution of the QUBO formulation in the operations research literature and analyze their meaning in a spin-glass language. This is significant because QUBO problems are considered among the main contenders for NP-hard problems that could be solved efficiently on a quantum computer such as D-Wave.
    Physics Procedia 12/2015; 68:16-19. DOI:10.1016/j.phpro.2015.07.102
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cells are central players in multiple autoimmune rheumatic diseases as a result of the imbalance between pathogenic and protective B-cell functions, which are presumably mediated by distinct populations. Yet the functional role of different B-cell populations and the contribution of specific subsets to disease pathogenesis remain to be fully understood owing to a large extent to the use of pauci-color flow cytometry. Despite its limitations, this approach has been instrumental in providing a global picture of multiple B-cell abnormalities in multiple human rheumatic diseases, more prominently systemic lupus erythematosus, rheumatoid arthritis and Sjogren's syndrome. Accordingly, these studies represent the focus of this review. In addition, we also discuss the added value of tapping into the potential of polychromatic flow cytometry to unravel a higher level of B-cell heterogeneity, provide a more nuanced view of B-cell abnormalities in disease and create the foundation for a precise understanding of functional division of labor among the different phenotypic subsets. State-of-the-art polychromatic flow cytometry and novel multidimensional analytical approaches hold tremendous promise for our understanding of disease pathogenesis, the generation of disease biomarkers, patient stratification and personalized therapeutic approaches.
    Arthritis Research & Therapy 12/2015; 17(1):561. DOI:10.1186/s13075-015-0561-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is known that the MDM2 protein is stabilized when it forms a heterodimer with its partner MDM4, but MDM2 protein stability in its homodimer form is not known. The MDM2 protein contains a C-terminal RING domain that not only functions as an E3 ligase to regulate ubiquitination of p53 and MDM2 itself, but also is characterized to be able to bind several specific cellular mRNAs to regulate gene expression. In this study, we evaluate whether the MDM2 protein stability is regulated by the binding of a specific small RNA (XIAP IRES mRNA). We performed chemical cross-linking and bimolecular fluorescence complementation (BiFC) assay to measure the human MDM2 protein stability in its homodimer form and the effect of XIAP IRES on MDM2 homodimerization and protein stabilization. Ubiquitination and pulse-chase assays were used to detect MDM2 self-ubiquitination and protein turn-over. Fluorescent titration and ITC were used to examine the binding between MDM2 RING protein and XIAP IRES. Western blot assay was used for determining protein expression. Clonogenic assay, WST and flow cytometry were used to test the effects of XIAP IRES, siXIAP and IR on cancer cell growth and apoptosis. We found that self-association (homodimerization) of MDM2 occurs through the C-terminal RING domain of MDM2 and that the MDM2 protein becomes unstable when it is homodimerized. MDM2 homodimerization resulted in an increased function of the RING domain for MDM2 self-ubiquitination. Binding of XIAP IRES to the RING domain inhibited MDM2 homodimerization and self-ubiquitination, which resulted in stabilization of MDM2, as well as increased XIAP expression. Upregulation of XIAP and MDM2 that led to inhibition of p53 by the XIAP IRES resulted in cell growth and survival in both p53-normal and -deficient cancer cells. Our study identified a new IRES RNA that interacts with MDM2 protein and regulates its stabilization, which suggested that targeting of MDM2 through disruption of MDM2 protein-RNA interaction might be a useful strategy for developing novel anti-cancer therapeutics.
    Molecular Cancer 12/2015; 14(1). DOI:10.1186/s12943-015-0334-0


  • Address
    201 Dowman Drive, 30322, Atlanta, GA, United States
  • Head of Institution
    James Wagner
  • Website
  • Phone
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

4101 Members View all

View all

Top publications last week by reads

Child and Adolescent Psychiatric Clinics of North America 02/2003; 12(1):xiii-xvi. DOI:10.1016/S1056-4993(02)00055-X
238 Reads
Trends in Ecology & Evolution 11/2015; DOI:10.1016/j.tree.2015.09.013
192 Reads

Top Collaborating Institutions


This map visualizes which other institutions researchers from Emory University have collaborated with.

Rg score distribution

See how the RG Scores of researchers from Emory University are distributed.