223
912.42
4.09
423

Publication History View all

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Cretaceous-Tertiary northwest-trending Sirt Basin system, Libya, is a rift/sag basin formed on Pan-African to Paleozoic-aged basement of North Africa. In this study, we investigate the rift-basin architecture and tectonic framework of the western Sirt Basin. Using remote sensed data, supported by borehole data from about 300 deep wells and surface geologic maps, we constructed geological cross sections and surface geology maps. Indication of the relative timing of structures and movement along faults has been determined where possible. Direction statistics for all the interpreted linear features acquired in the study area were calculated and given as a total distribution and then the totals are broken down by the major basin elements of the area. Hundreds of lineaments were recognized. Their lengths, range between a hundred meters up to hundreds of kilometers and the longest of the dominant trends are between N35W - N55W and between N55E – N65E which coincides with Sirt Basin structures. The produced rose diagrams reveal that the majority of the surface linear features in the region have four preferred orientations: N40-50W in the Zallah Trough, N45-55W in the Dur al Abd Trough, N35-55W in the Az Zahrah-Al Hufrah Platform, and in contrast in the Waddan Uplift a N55-65E trend. We recognize six lithostratigraphic sequences (phases) in the area’s stratigraphic framework. A Pre-graben (Pre-rift) initiation stage involved the Pre-Cretaceous sediments formed before the main Sirt Basin subsidence. Then followed a Cretaceous to Eocene graben-fill stage that can divided into four structurally-active and structurally-inactive periods, and finally a terminal continental siliciclastics-rich package representing the post-rift stage of the development in post-Eocene time. In general five major fault systems dissect and divide the study area into geomorphological elevated blocks and depressions. Most of the oil fields present in the study area are associated with structural hinge zones and adjoining highs. Late Eocene rocks exposed in the western part of the basin exhibit a complex network of branching segmented normal and strike-slip faults, generally with a NNW-SSE structural orientations. Many surface structural features have been interpreted from satellite images which confirm sinistral strike-slip kinematics. Relay ramp structures, numerous elongate asymmetric synclines associated with shallow west limbs and steeper dipping east limbs are developed in the hangingwalls adjacent to west downthrowing normal faults. These structural patterns reflect Cretaceous/Tertiary extensional tectonics with additional control by underlying pre-existing Pan-African basement fabrics and ENE-WSW trending Hercynian structures. We relate the Sirt Basin rift development as exemplified in our study area to the break-up of Gondwana represented by the structural evolution of the West-Central African rift system, and the South and Central Atlantic, the Tethys and the Indian Oceans.
    Journal of African Earth Sciences 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calluna vulgaris can and does grow in areas considered unsuitable for production of biomass crops. In the UK, Calluna vegetation is regularly controlled by burn management and if instead the lost biomass could be harvested would it represent a viable energy crop? This study used established techniques for other energy crops to assess the energy yield, energy efficiency and the greenhouse gas savings represented by cropping of Calluna under two scenarios; only harvested on the area currently under burn management; and harvested on the present total area of Calluna in the UK. The study can consider biomass potential across the UK and can include altitude changes. The study can show that Calluna would represent an efficient energy crop in areas where it would not be possible to revert to functioning peat bogs. The energy efficiency was 65±19GJoutputGJinput−1 with GHG savings of up to 11 tonnes CO2eq ha−1 yr−1. When considered across the UK the potential energy production was up to 40.7 PJ yr−1 and the potential greenhouse gas saving was upto −2061 ktonnes CO2eq yr−1 if the all Calluna could be brought into production and substituted for coal.
    Biomass and Bioenergy 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A significant proportion of moderate-large earthquakes, plus aftershocks, nucleate within and propagate through upper-crustal carbonate-dominated sequences, where the effects of lithological variations on fault behaviour are poorly understood. The Gubbio fault is an active (1984, Ms = 5.2) normal fault in Italy, hosted in Mesozoic–Cenozoic limestones and interbedded marls. Fault core domains derived from limestone at the studied outcrop are characterised by fractures/hydrofractures and breccias and host a number of localised (<1.5 mm wide) principal slip zones (PSZs). The majority of displacement of up to 230 m is concentrated in these PSZs, which comprise cataclasites, gouges, and calcite veins. Degassing bubbles, ‘quenched’ calcite, and the transformation of smectite to illite, are also observed within PSZs, implying frictional heating and seismic slip. In contrast, marl-rich domains exhibit distributed shear planes bounding a continuous and pervasive foliation, defined by phyllosilicate-rich pressure-solution seams. Microstructures in the seams include folds/kinks of phyllosilicates and pressure shadows around clasts, consistent with aseismic fault creep. A model is proposed for the behaviour of lithologically complex carbonate-hosted faults during the seismic cycle, whereby limestone-dominated fault core domains behave in a predominantly seismic manner, whereas phyllosilicate-rich domains behave in a predominantly aseismic manner.
    Journal of Structural Geology 01/2014; 58:22–42.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synchronized seismic and oceanographic data were acquired during the Geophysical Oceanography (GO) project cruise in the Gulf of Cadiz in April-May 2007. The small volume (117 cu-in.) mini GI-gun seismic source used during the GO calibration experiment provided high resolution seismic data, which unveiled new features of the internal structure of the ocean. The seismic acquisition design gave a usable bandwidth of 50-250 Hz with a vertical resolution of 1.25 m, which is similar to that achieved by co-located CTD casts. We focus on the reflections observed on seismic data covering the moorings area. To test the hypothesis that measurable reflections can be generated by suspended sediment, we perform forward modeling of seismic response based on the temperature, salinity, and light attenuation measurements, available from CTD casts. Forward modeling based solely on temperature and salinity profiles show that thermohaline structure does not always explain reflections in water column, but they are consistent with light attenuation measurements.
    The Journal of the Acoustical Society of America 05/2013; 133(5):3313.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hough Transform analysis is used as an objective means to constrain volcano distribution in the central Sunda Arc, Indonesia. Most volcanoes in the arc define four en echelon, linear segments, each of 500–700 km length. Javan volcanoes that do not lie on these segments either (i) formed at an early stage in the history of the arc and erupted products that are petrologically and geochemically distinct from typical arc magma, or (ii) lie along other mapped structures.The en echelon distribution of volcanoes in the central Sunda Arc is best explained as originating from two possible sources. First, interaction with the subducting Indo-Australian Plate may induce stress in the arc lithosphere generating pathways for magma to exploit. Second, downward flexure of the arc lithosphere, as a result of mantle flow or loading by the arc, would also establish arc-normal tension towards the base of the lithosphere, where magma is supplied to volcanic systems.To the west and east of the central Sunda Arc deviations from the distribution of long, en echelon, linear segments can be understood as responses to specific stress fields in the arc lithosphere of Sumatra and eastern Nusa Tenggara, respectively. Control of volcano distribution by arc lithosphere explains why there are large variations in the depth from volcanoes to the zone of slab seismicity in the central Sunda Arc, where there is little variation in slab geometry or the rate of plate convergence.
    Earth and Planetary Science Letters 05/2013; s 369–370:24–33.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The peat soils that underlie much of the UK uplands contain a significant store of carbon and although carbon cycling in UK peat has received a great deal of research attention there are relatively little data available on the physical impact of grazing on carbon dynamics in peat soils. Therefore, this study asked whether trampling of peat soils had a significant effect on a major carbon flux pathway of peat ecosystems i.e. surface exchange of CO2 with the atmosphere. This study simulated regular trampling by sheep on peat cores for a period of 6 months and monitored the CO2 exchange with the atmosphere. Additionally, it also investigated the impact of the cessation of trampling.Results show that photosynthesis and net ecosystem exchange of CO2 were significantly decreased following trampling by up to 75% relative to control cores. Cessation of trampling led to a significant increase in ecosystem respiration after just 3 months but photosynthesis and net ecosystem exchange were not significantly different to the pre-cessation period.
    Geoderma 04/2013; s 197–198:59–66.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle.
    Science of The Total Environment 11/2012; 442C:397-404.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optimization of groundwater and other subsurface resources requires analysis of multiple-well systems. The usual modeling approach is to apply a linear flow equation (e.g., Darcy's law in confined aquifers). In such conditions, the composite response of a system of wells can be determined by summating responses of the individual wells (the principle of superposition). However, if the flow velocity increases, the nonlinear losses become important in the near-well region and the principle of superposition is no longer valid. This article presents an alternative method for applying analytical solutions of non-Darcy flow for a single- to multiple-well systems. The method focuses on the response of the central injection well located in an array of equally spaced wells, as it is the well that exhibits the highest pressure change within the system. This critical well can be represented as a single well situated in the center of a closed square domain, the width of which is equal to the well spacing. It is hypothesized that a single well situated in a circular region of the equivalent plan area adequately represents such a system. A test case is presented and compared with a finite-difference solution for the original problem, assuming that the flow is governed by the nonlinear Forchheimer equation.
    Ground Water 10/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estimates of the greenhouse gas (GHG) fluxes resulting from sheep grazing upon upland peat soils have never been fully quantified. Previous studies have been limited to individual flux pathways or to comparing the presence to the absence of sheep grazing. Therefore, this study combines a model of the physical impact of grazing with models of: biomass production; energy usage in sheep; and peat accumulation. These combined modelling approaches enabled this study to consider the indirect and direct impacts of sheep upon the carbon and greenhouse gas balance of a peatland at different grazing intensities as well as the changes between grazing intensities. The study considered four vegetation scenarios (Calluna sp., Molinia sp.; reseeded grasses, and Agrostis-Festuca grassland) and a mixed vegetation scenario based upon the vegetation typical of upland peat ecosystems in northern England. Each scenario was considered for altitudes between 350 and 900m above sea level and for grazing intensities between 0.1 and 2ewes/ha. The study can show that the total GHG flux at the vegetative carrying capacity tended to decline with increasing altitude for all vegetation scenarios considered except for Molinia sp. The average total GHG flux for all scenarios was 1505kgCO(2)eq/ha/yr/(ewe/ha), and on average 89% of the fluxes were directly from the sheep and not from the soil, and are therefore not unique to a peat soil environment. The study suggests that emission factors for upland sheep have been greatly underestimated. By comparing the total flux due to grazers to the flux to or from the soil that allows the study to define a GHG carry capacity, i.e. the grazing intensity at which the flux due to grazing is equal to the sink represented by the peat soils, this GHG carrying capacity varies between 0.2 and 1.7ewes/ha with this capacity declining with increasing altitude for all model scenarios.
    Science of The Total Environment 09/2012; 438C:426-434.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Only a few studies have considered the N budget of peat soils and this in turn has limited the ability of studies to consider the impact of changes in climate and atmospheric deposition upon the N budget of a peat soil. This study considered the total N budget of an upland peat-covered catchment over the period 1993 to 2009. The study has shown: i) Over the period of study the total N atmospheric deposition declined from 3.5 to 0.7 tonnes N/km2/yr. ii) The total fluvial export of N at soil source varied from 0.41 to 1.85 tonnes N/km2/yr with the fluvial flux being greater than the atmospheric input in 3 years of the study, implying significant internal processing. iii) Measuring the C:N ratio of organic matter pools in the ecosystem shows that gross primary productivity and litter decomposition represent outputs of N from the soil while DOC production and humification represent inputs of N. iv) Overall, the total N budget of the peat ecosystem varies from − 1.0 to + 2.5 tonnes N/km2/yr, i.e. in some years the ecosystem is a net source of N. The time series of the total N budget suggests that the ecosystem is responding to the occurrence of severe droughts with a long-term decline in N storage that could be interpreted as a response to long-term high N deposition rates, even if those rates have now diminished.
    Science of The Total Environment 07/2012; 433:178-88.
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.