Departments View all

International Center for Tropical Agriculture (CIAT)
149
Total Impact Points
78
Members
International Livestock Research Institute (ILRI)
6
Total Impact Points
68
Members

Publication History View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The greatest current threat to cassava in sub-Saharan Africa, is the continued expansion of plant virus pandemics being driven by super-abundant populations of the whitefly vector, Bemisia tabaci. To track the association of putatively genetically distinct populations of B. tabaci with pandemics of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), a comprehensive region-wide analysis examined the phylogenetic relationships and population genetics of 642 B. tabaci adults sampled from cassava in six countries of East and Central Africa, between 1997 and 2010, using a mitochondrial DNA cytochrome oxidase I marker (780 bases). Eight phylogenetically distinct groups were identified, including one, designated herein as 'East Africa 1' (EA1), not previously described. The three most frequently occurring groups comprised >95% of all samples. Among these, the Sub-Saharan Africa 2 (SSA2) group diverged by c. 8% from two SSA1 sub-groups (SSA1-SG1 and SSA1-SG2), which themselves were 1.9% divergent. During the 14-year study period, the group associated with the CMD pandemic expansion shifted from SSA2 to SSA1-SG1. Population genetics analyses of SSA1, using Tajima's D, Fu's Fs and Rojas' R2 statistics confirmed a temporal transition in SSA1 populations from neutrally evolving at the outset, to rapidly expanding from 2000 to 2003, then back to populations more at equilibrium after 2004. Based on available evidence, hybrid introgression appears to be the most parsimonious explanation for the switch from SSA2 to SSA1-SG1 in whitefly populations driving cassava virus pandemics in East and Central Africa.
    Virus Research 11/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seed sterility and grain discoloration limit rice production in Colombia and several Central American countries. In samples of discolored rice seed grown in Colombian fields, the species Burkholderia glumae and B. gladioli were isolated, and field isolates were compared phenotypically. An artificial inoculation assay was used to determine that while both bacterial species cause symptoms on rice grains, B. glumae is a more aggressive pathogen, causing yield reduction and higher levels of grain sterility. To identify putative virulence genes differing between B. glumae and B. gladioli, four previously sequenced genomes of Asian and US strains of the two pathogens were compared with each other and with two draft genomes of Colombian B. glumae and B. gladioli isolates generated for this study. While previously characterized Burkholderia virulence factors are highly conserved between the two species, B. glumae and B. gladioli strains are predicted to encode distinct groups of genes encoding type VI secretion systems, transcriptional regulators, and membrane sensing proteins. This study shows that both B. glumae and B. gladioli can threaten grain quality although only one species affects yield. Furthermore, genotypic differences between the two strains are identified that could contribute to disease phenotypic differences.
    Phytopathology 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was aimed at inducing androgenesis in cultured anthers of cassava (Manihot esculenta Crantz) to develop a protocol for the production of doubled haploids. Microspore reprogramming was induced in cassava by cold or heat stress of anthers. Since the anthers contain both haploid microspores and diploid somatic cells, it was essential to verify the origin of anther-derived calli. The origin of anther-derived calli was assessed by morphological screening followed by histological analysis and flow cytometry (FCM). Additionally, simple sequence repeat (SSR) and amplified fragmented length polymorphism (AFLP) assays were used for the molecular identification of the microspore-derived calli. The study clearly demonstrated the feasibility of producing microspore-derived calli using heat- or cold-pretreated anthers. Histological studies revealed reprogramming of the developmental pathway of microspores by symmetrical division of the nucleus. Flow cytometry analysis revealed different ploidy level cell types including haploids, which confirmed their origin from the microspores. The SSR and AFLP marker assays independently confirmed the histological and FCM results of a haploid origin of the calli at the DNA level. The presence of multicellular microspores in the in vitro system indicated a switch of developmental program, which constitutes a crucial step in the design of protocols for the regeneration of microspore-derived embryos and plants. This is the first detailed report of calli, embryos, and abnormal shoots originated from the haploid cells in cassava, leading to the development of a protocol for the production of doubled haploid plants in cassava.
    Protoplasma 09/2013;

Information

  • Address
    UN Avenue, Nairobi, Nairobi Area, Kenya
  • Website
    http://www.cgiar.org/
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

1337 Members View all

Top Collaborating Institutions

Collaborations

This map visualizes which other institutions researchers from Consultative Group on International Agricultural Research have collaborated with.

Rg score distribution

See how the RG Scores of researchers from Consultative Group on International Agricultural Research are distributed.