Lemont, Illinois, United States

Departments View all

Total Impact Points
Total Impact Points

Recent Publications View all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying land-use drivers of changes in river condition is complicated by spatial scale, geomorphological context, land management, and correlations among responding variables such as nutrients and sediments. Furthermore, variations in standard metrics, such as substratum composition, do not necessarily relate causally to ecological impacts. Consequently, the absence of a significant relationship between a hypothesised driver and a dependent variable does not necessarily indicate the absence of a causal relationship. We conducted a gradient survey to identify impacts of catchment-scale grazing by domestic livestock on river macroinvertebrate communities. A standard correlative approach showed that community structure was strongly related to the upstream catchment area under grazing. We then used data from a stream mesocosm experiment that independently quantified the impacts of nutrients and fine sediments on macroinvertebrate communities to train artificial neural networks (ANNs) to assess the relative influence of nutrients and fine sediments on the survey sites from their community composition. The ANNs developed to predict nutrient impacts did not find a relationship between nutrients and catchment area under grazing, suggesting that nutrients were not an important factor mediating grazing impacts on community composition, or that these ANNs had no generality or insufficient power at the landscape-scale. In contrast, ANNs trained to predict the impacts of fine sediments indicated a significant relationship between fine sediments and catchment area under grazing. Macroinvertebrate communities at sites with a high proportion of land under grazing were thus more similar to those resulting from high fine sediments in a mesocosm experiment than to those resulting from high nutrients. Our study confirms that 1) fine sediment is an important mediator of land-use impacts on river macroinvertebrate communities, 2) ANNs can successfully identify subtle effects and separate the effects of correlated variables, and 3) data from small-scale experiments can generate relationships that help explain landscape-scale patterns.
    PLoS ONE 03/2015; 10(3):e0120901. DOI:10.1371/journal.pone.0120901
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China). We found that the number and composition type of plant functional groups had no effect on bacterial diversity and community composition, or on the relative abundance of major taxa. In contrast, bacterial community patterns were significantly structured by soil water content differences among plots. Our results support researches that suggest that water availability is the key factor structuring soil bacterial communities in this semi-arid ecosystem.
    PLoS ONE 12/2014; 9(12):e115798. DOI:10.1371/journal.pone.0115798
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal) become groundwater dominated (krenal). Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.
    PLoS ONE 11/2014; 9(11):e113524. DOI:10.1371/journal.pone.0113524


  • Address
    9700 S Cass Ave, 60439, Lemont, Illinois, United States
  • Website
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.

1017 Members View all

View all

Top publications last week by reads

Chemical Communications 02/2013; 49(32). DOI:10.1039/c3cc39121c
64 Reads
Advanced Energy Materials 01/2014; 4(1). DOI:10.1002/aenm.201300882
59 Reads

Top Collaborating Institutions


This map visualizes which other institutions researchers from Argonne National Laboratory have collaborated with.

Rg score distribution

See how the RG Scores of researchers from Argonne National Laboratory are distributed.